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Abstract

Learning parity with noise (LPN) has been widely studied and used in cryptography. It was recently
brought to new prosperity since Boyle et al. (CCS’18), putting LPN to a central role in designing secure
multi-party computation, zero-knowledge proofs, private set intersection, and many other protocols. In
this paper, we thoroughly studied the security of LPN problems in this particular context. We found that
some important aspects have long been ignored and many conclusions from classical LPN cryptanalysis
do not apply to this new setting, due to the low noise rates, extremely high dimensions, various types (in
addition to F2) and noise distributions.

• For LPN over a field, we give a parameterized reduction from exact-noise LPN to regular-noise LPN.
Compared to the recent result by Feneuil, Joux and Rivain (Crypto’22), we significantly reduce the
security loss by paying only a small additive price in dimension and number of samples.

• We analyze the security of LPN over a ring Z2λ . Existing protocols based on LPN over integer rings
use parameters as if they are over fields, but we found an attack that effectively reduces the weight
of a noise by half compared to LPN over fields. Consequently, prior works that use LPN over Z2λ

overestimate up to 40 bits of security.

• We provide a complete picture of the hardness of LPN over integer rings by showing: 1) the equivalence
between its search and decisional versions; 2) an efficient reduction from LPN over F2 to LPN over
Z2λ ; and 3) generalization of our results to any integer ring.

Finally, we provide an all-in-one estimator tool for the bit security of LPN parameters in the context of
PCG, incorporating the recent advanced attacks.

1 Introduction

The learning parity with noise (LPN) assumption states that it is hard to distinguish LPN samples (A,A ·
s + e) from random samples, where A is a public matrix, s is a random secret and e is a noise vector
sampled from a sparse distribution. The LPN assumption has been applied to build various primitives, e.g.,
symmetric encryption and authentication (e.g., [HB01] and follow-up works), public key encryption [Ale03],
commitment scheme [JKPT12], garbled circuits [App16], oblivious transfer [DDN14] and collision-resistant
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Protocol LPN type

[BCG+19a, YWL+20] (C)OT F2

[SGRR19] VOLE F261−1 and Z264

[WYKW21] ZK F2 and F261−1
[FKL+21] ZK F2128

[BMRS21] ZK F240 and F261−1
[BBMH+21] ZK Z272

[BBMHS22] ZK Z2104

[DILO22a, CWYY23] MPC F2, F240 and F2128

[RS21, BC23, RR22] PSI F2128

(a) Prior works in the PCG framework and their re-
quired LPN variants over different fields and rings.
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(b) The bit-security from our analysis for LPN over F2λ

and Z2λ . Parameters N = 210, k = 652, t = 106 are used.

Figure 1: LPN assumptions in prior works, and our analysis on one set of parameters. For a set of
parameters (N, k, t), N is the number of samples, k is the dimension and t is the Hamming weight of a noise
vector.

hash functions [BLVW19, YZW+19]. All these primitives adopt LPN over binary field F2 with moderate
dimensions.

The recent work by Boyle et al. [BCGI18] introduced the pseudorandom correlation generator (PCG)
paradigm that can produce a large batch of correlated randomness, e.g., (correlated) oblivious transfer
((C)OT) and (vector) oblivious linear evaluation ((V)OLE), at a small communication. The core of the
PCG idea is to build a pseudorandom generator (PRG) with a simple internal structure from LPN as-
sumptions and then privately evaluate such a PRG using function secret sharing [BGI15]. The sparsity
of a noise e translates to communication efficiency, while the efficiency of LPN encoding translates to
computational efficiency. Later, the PCG paradigm was used to build a series of concretely efficient
protocols [BCG+19b, BCG+19a, SGRR19, YWL+20, BCG+20, WYKW21, CRR21, BCG+22, AS22,
BCCD23, RRT23] with sublinear communication for generating random (C)OT or (V)OLE correlations.
These PCG-like protocols have gained a lot of interests in designing various concretely efficient protocols,
including secure multi-party computation (MPC) (e.g., [DPSZ12, NNOB12, KOS16, WRK17a, WRK17b,
HSS20, CDE+18, DEF+19, YWZ20, DILO22a, CWYY23]), zero-knowledge (ZK) proofs (e.g., [WYKW21,
BMRS21, DIO21, YSWW21, BBMH+21, DILO22b, BBMHS22, WYY+22]), privacy-preserving machine
learning [SGRR19, WYX+21, HjLHD22], private set intersection (PSI) [RS21, RR22, BC23], etc.

Although widely used in many constructions and some real-world applications, these protocols often
use LPN variations that are not much studied in cryptanalysis, especially compared to the classical LPN
assumption over F2 [Ale03, FS09, HS13, TS16]. Furthermore, prior analyses on the classical LPN problems
do not directly cover the LPN variants used in the PCG setting because of their unique features:

• Value type. Protocols often require an LPN assumption over a ring other than F2, including a finite field or
even an integer ring 1 like Z2λ .

• Noise distribution. Most existing analyses focus on a Bernoulli or exact noise distribution. However, most
PCG-like protocols, for better performance, adopt a regular noise distribution, where the noise vector is
divided into consecutive equal-sized sub-vectors, and each sub-vector has a single noisy coordinate in a
random position.

1By integer ring we refer to ZN for any composite number N , which is used to distinguish from polynomial rings.
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There are some recent exceptions. [FJR22] showed a generalized reduction in LPN, which can imply
a reduction from exact-noise LPN to regular-noise LPN but with a very large security loss; [CCJ23]
showed an attack specific to regular noises but not for parameters usable in PCG applications; [BØ23]
also introduced an algebraic attack which, as we will show in this paper, can be cheaply mitigated without
significantly increasing the communication.

• Dimension and noise rate. Most applications require an LPN assumption with very high dimension
(e.g., millions) and low noise rate (e.g., 1/105), which is out of the typically reported range of parameters
considered for coding-theoretic primitives.

At this point, all implementations of PCG-like protocols use the LPN parameters from the original work by
Boyle et al. [BCGI18], who analyzed the concrete security of LPN over F2128 . However, as we summarize in
Table 1a, follow-up works used the same analysis to choose parameters for many different variants of LPN
over F2, Fp, and Z2λ , many of which were not covered by the original analysis. It was not clear how large a
gap in security when using LPN parameters over a field for LPN over another field or ring.

1.1 Our Contributions

In this paper, we put forth a set of LPN analyses specific to the setting of PCG applications. From the
theoretical perspective, we show a tighter reduction from exact-noise LPN to regular-noise LPN and a
complete categorization between LPN over integer rings and prime fields. From the concrete side, we
summarize and incorporate all existing LPN attacks applicable to the PCG setting into one estimator tool that
can be used for researchers to select LPN parameters. In particular, we find that existing PCG applications use
parameters more expensive than necessary for fields and less security than needed for integer rings. Below
we provide more details of our contributions.

The hardness of LPN under regular noise distributions. Recently, Feneuil et al. [FJR22] observed that,
as a special case in their main theorem, an exact noise vector (of Hamming weight t) is also regular with
some probability (estimated to e−t in Section 3), and thus (T, ϵ)-hard 2 LPN under an exact noise distribution
implies (T, et · ϵ)-hard LPN under a regular noise distribution. However, the security loss is sometimes
unaffordable as LPN may not have security beyond et in many practical settings. To reduce the security
loss, we introduce a tunable parameter α ≥ 2 and divide a noise vector into αt blocks (each denoted by ei).
Furthermore, instead of hoping that every ei has the exact weight 1, we relax the condition to that the weight
of ei is at most 1. For each block, we add an extra sample with noise ẽi such that vector (ei, ẽi) has the exact
weight 1, which allows us to obtain a regular noise vector. As a result, we prove that if the exact-noise LPN
problem over an arbitrary field F with sample number N , dimension k and weight t is (T, ϵ)-hard, then the
regular-noise LPN problem over F with sample number (N + αt), dimension (k + αt) and weight (αt) is
(T − poly(k,N), 2

t
α · ϵ)-hard, where the security loss is reduced by at least 2α, while the dimension and

number of samples are increased by only αt.
We note that our reduction is not contradictory, but rather complementary, to a very recent work by

Briaud and Øygarden [BØ23]. In particular, they proposed a new algebraic attack that can take advantage of
regular noise distributions, and demonstrated that the algebraic attack on regular-noise LPN is more efficient
than other existing attacks, in the scenarios characterized by small code rates (particularly, some primal-LPN
parameter sets). Whereas our reduction establishes an asymptotic connection, suggesting that LPN with
regular noise could be as hard as that with exact noise, albeit with some security loss.

The hardness of LPN over integer rings. Although having been used in protocol design [SGRR19,
BBMH+21, BBMHS22], LPN problems over integer rings (e.g., Z2λ) have received relatively limited

2We classify a problem as (T, ϵ)-hard when, for any probabilistic algorithm B with a running time of T , the algorithm’s capacity
to solve this problem is limited to a success probability of at most ϵ.
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LPN This work [BCGI18]

N k t F2128 F28 Z2128 Z4 F2 Any field

210 652 57 111 (−0) 104 (−0) 54 (−2) 68 (−2) 94 (−4) 80
212 1589 98 100 (−0) 92 (−0) 53 (−0) 63 (−1) 83 (−3) 80
214 3482 198 101 (−0) 97 (−0) 58 (−1) 67 (−1) 86 (−3) 80
216 7391 389 103 (−0) 101 (−0) 63 (−1) 72 (−2) 91 (−4) 80
218 15336 760 105 (−0) 105 (−0) 68 (−1) 76 (−1) 95 (−3) 80
220 32771 1419 107 (−6) 107 (−6) 73 (−1) 81 (−1) 99 (−2) 80
222 67440 2735 108 (−4) 108 (−4) 75 (−1) 84 (−1) 104 (−5) 80

Table 1: Comparison between our analysis and [BCGI18] for the bit-security of an LPN problem with
dimension k, number of samples N and Hamming weight of noises t over different rings. The bit-security
considers an exact noise distribution; the values in brackets denote the decrease of bit-security due to the
usage of a regular noise distribution. The sets of LPN parameters are adopted from [BCGI18].

Dual-LPN This work [BCGI18]

n N t F2128 F28 Z2128 Z4 F2 Any field

210 212 44 117 (−0) 109 (−0) 61 (−0) 73 (−0) 97 (−1) 80
212 214 39 111 (−0) 103 (−0) 62 (−0) 74 (−0) 95 (−0) 80
214 216 34 107 (−0) 99 (−0) 64 (−0) 73 (−0) 93 (−0) 80
216 218 32 108 (−0) 100 (−0) 69 (−0) 77 (−0) 95 (−0) 80
218 220 31 112 (−0) 104 (−0) 73 (−0) 81 (−0) 99 (−0) 80
220 222 30 116 (−0) 108 (−0) 79 (−0) 87 (−0) 103 (−0) 80
222 224 29 119 (−0) 112 (−0) 83 (−0) 92 (−0) 107 (−0) 80

Table 2: Comparison between our analysis and [BCGI18] for the bit-security of a dual-LPN (a.k.a., syndrome
decoding) problem with dimension N − n = 3N/4, number of samples N , Hamming weight of noises t.
These parameters are from [BCGI18].

attention in research. One notable exception is the work of Akavia [Aka08], which explored a generalized
LPN assumption over an integer ring within the context of the random samples access model. However, the
work does not consider the hardness of LPN problems over integer rings in the PCG setting. As a result, all
existing works for PCG-like protocols and applications select the parameters assuming that LPN over an
integer ring is as secure as LPN over a finite field.

In this paper, we provide a complete relationship between LPN over fields and that over integer rings,
with both asymptotic reduction and concrete analysis. From the theoretic side, we show the equivalence
of related problems as shown in Figure 2. On the concrete side, our analysis (in Figure 1b and in Tables 1
and 2,) shows that LPN over an integer ring is significantly more vulnerable to attacks than LPN over a finite
field of similar size. What’s more, we show that although LPN over a finite field becomes harder to attack as
the field size increases, LPN over an integer ring becomes easier to attack as the ring size increases!

1. Focusing on the most commonly used ring Z2λ , we show a concrete attack that can solve a t-noise LPN
over Z2λ by solving a

(
2(λ−1)

2λ−1 · t
)

-noise (which approximates to t/2) LPN over F2. This means that LPN
over an integer ring is concretely weaker than LPN over a finite field and we need to double the weight of
noise vectors to cover this attack. The impact to existing cryptographic protocols is significant. It will lead
to roughly 2× more communication and computation.

4



2. On the positive side, we provide an evidence that the LPN problem over an integer ring is generally
hard. In particular, we show a reduction between t-noise LPN over F2 and (λ · t)-noise LPN over a
ring Z2λ , which means that LPN over an integer ring is asymptotically as hard as classical LPN. This
“efficient” reduction requires a different noise distribution: instead of sampling t locations and putting a
uniform non-zero entry from Z2λ in each location, we need to independently sample λ weight-t noises
e0, . . . , eλ−1 over F2, and define the final noise vector as e =

∑
i∈[λ] 2

i · ei with weight ≤ λ · t. This
noise distribution may be interesting, as it can be used in the design of PCG-like protocols by adopting the
upper bound λ · t to run these protocols. This change of distributions is crucial: without such change, the
most favorable reduction we can identify shifts from t-noise LPN over F2 to (2λ · t)-noise LPN over Z2λ ,
which is exponentially worse than the above. Another interesting fact is that the above reductions only
require the code matrix A to be Boolean, which eliminates the need for integer multiplication during LPN
encoding. Prior work [CRR21] observed that using a Boolean code matrix is not vulnerable to existing
linear-test attacks for LPN over finite fields; here we show that for LPN over integer rings, using a Boolean
matrix is provably secure assuming that classical LPN over F2 is hard.

3. While the above reductions focus on the decisional version of LPN, we also give a reduction from
computational LPN over Z2λ to that over F2. Thus, we show the equivalence between computational and
decisional versions of LPN over Z2λ as shown in Figure 2. We also generalize all the results to any integer
ring. In particular, we show a concrete attack that can solve a t-noise LPN over a ring Zpλ1qλ2 by solving

either a
(
p−1
p · t

)
-noise LPN over Fp or a

(
q−1
q · t

)
-noise LPN over Fq, where p, q are two primes. This

attack works for both computational and decisional versions of LPN. We also give a reduction from t-noise
LPN over Fp and t-noise LPN over Fq to

(
(λ1 + λ2) · t

)
-noise LPN over Zpλ1qλ2 . Given these reductions

over Zpλ1qλ2 , one can easily generalize them to any integer ring.

Comp-LPN over F2

Comp-LPN over Z2λ
Sec 4.3

Dec-LPN over F2

Dec-LPN over Z2λ

trivial

trivial[FS96, KSS10, AIK07]
Sec 4.1

Sec 4.2

Figure 2: The reduction relations between computational and decisional versions of LPN over F2 and Z2λ in
the presence of Bernoulli and exact noise distribution.

Concrete security of LPN for PCG. Finally, we maintain an easy-to-use tool to estimate the costs of the
advanced attacks (Pooled Gauss, SD, ISD and algebraic attacks) on the concrete security of LPN problems
related to the PCG setting, and will integrate new attacks found in the future into the estimator tool. 3 Prior
to this work, most PCG-like protocols use the analysis from [BCGI18] for all LPN variants. We refined
their analysis and incorporated attacks on integer rings and regular noises. See Table 1 and Table 2 for some
representative parameters originally proposed in [BCGI18].

In the process of summarizing existing attacks, we also made an interesting observation in the context
of PCG. Statistical decoding (SD) and information set decoding (ISD) are both important attack techniques
for the exact-noise LPN problems. We observe that in the context of PCG, ISD attacks are almost always

3Available at www.lpnestimator.com
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better than the SD attacks, including the recent work of SD 2.0 by Carrier et al. [CDMT22]. We formalize
this observation by showing that both the optimal SD and SD 2.0 attacks (adapted to the low-noise setting)
require more cost, compared to the Prange’s original ISD algorithm [Pra62] for a large set of commonly used
parameters. Note that our findings do not diminish the relevance of SD 2.0; rather, they arise from differences
in parameter settings between our work and [CDMT22]. This also shows the disparity of cryptanalysis
between classical LPN problems with high noise rates and low-noise LPN problems used in PCG-like
protocols.

Subsequent works. The estimator tool has been used in subsequent works (e.g., [HLL+23]) to choose LPN
parameters for PCG-like protocols. Our attack on integer rings has subsequently been noted by multiple
works. Baum et al. [BBMHS22] addressed this attack by a countermeasure: sampling the non-zero values in
the noise vector only from invertible elements in Z2λ (i.e., odd values). This plausibly prevents the attack,
and we did not find an efficient attack against LPN over Z2λ with the countermeasure. Besides, the updated
version by Boyle et al. [BCG+20] and the work by Lin et al. [LXY23] adopted the same countermeasure to
address our attack. It seems to be hard to prove that LPN over F2 implies LPN over Z2λ with random-odd
noises, even if a significant security loss is allowed. This is because two noise vectors in two adjacent hybrids
have the strong correlation, when a random odd value is sampled for each noisy coordinate. If one is desirable
to obtain a tight reduction from LPN over F2 to that over Z2λ , it may choose the noise distribution in the
form of e =

∑
i∈[λ] 2

i · ei with independent and random weight-t noises ei for i ∈ [λ].

2 Preliminary

2.1 Notation

We denote by log the logarithm in base 2. For a, b ∈ N with a ≤ b, we write [a, b] = {a, . . . , b} and use [n]
to denote [0, n− 1] for simplicity. We use x← S to denote sampling x uniformly at random from a set S and
x← D to denote sampling x according to a distribution D. For a ringR, we denote by |R| the size ofR. We
will use bold lower-case letters like a for column vectors, and bold upper-case letters like A for matrices. By
slightly abusing the notation, for a vector a, we use |a| to denote the Hamming weight of a, and denote by
a[i] the i-th component of a. For two vectors x,y, we denote by ⟨x,y⟩ the inner product of x and y. For a
vector a ∈ (Z2λ)

k, we use BitDecomp(a) to denote the bit-decomposition of a, and its output is denoted by
(a0,a1, · · · ,aλ−1) such that ai ∈ Fk

2 for i ∈ [λ] and (a0[j],a1[j], . . . ,aλ−1[j]) is the bit-decomposition
of ring element a[j] ∈ Z2λ for j ∈ [k]. Let BitDecomp−1(a0,a1, · · · ,aλ−1) =

∑λ−1
i=0 2i · ai ∈ (Z2λ)

k be
the inverse of BitDecomp(a). We use poly(·) to denote a polynomial function. For two distributions X and
Y , we denote by X ≈c Y that X is computationally indistinguishable from Y . We will use the following
lemma:

Lemma 1 (see, e.g., [YS16]). For any µ ∈ (0, 1), if each coordinate of a vector v ∈ Ft
2 is independently set

to 1 with probability µ, then the probability that |v| = ⌈µt⌉ is at least Ω(1/
√
t).

2.2 Learning Parity with Noise

Recently, variants of the learning parity with noise (LPN) assumption [BFKL94] are used to build PCG-like
protocols with sublinear communication for generating (C)OT and (V)OLE correlations. The LPN variants
are defined over a general finite ringR. The known LPN-based PCG-like protocols mainly consider three
cases for the choices of ringR:

• Case 1 that R = F2 is used to design the COT protocols [BCG+19b, BCG+19a, YWL+20, CRR21,
BCG+22, RRT23], which is in turn able to be transformed into standard OT protocols.
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• Case 2 thatR is a finite field F with |F| > 2 is used to construct the VOLE protocols [BCGI18, BCG+19b,
BCG+19a, SGRR19, WYKW21, CRR21, BCG+22, RRT23] and the OLE protocols [BCG+19b, BCG+20,
AS22, BCCD23].

• Case 3 thatR = Z2λ (e.g., λ ∈ {32, 64, 128}) is used to obtain the VOLE protocols [SGRR19, BBMH+21,
BBMHS22, LXY23].

When considering more general rings such asR = Zpλ for a prime p > 2 andR = Zpλ1qλ2 for two primes
p, q, the LPN problems over such rings may be interesting for future protocols. Following prior works
(e.g., [BCG+19b, BCG+19a]), we define the (primal-)LPN and dual-LPN assumptions over a general ringR
as follows:

Definition 1 (LPN). Let D(R) = {Dt,N (R)}t,N∈N denote a family of distributions over a ring R such
that for any t,N ∈ N, Im(Dt,N (R)) ⊆ RN . Let C be a probabilistic code generation algorithm such
that C(k,N,R) outputs a matrix A ∈ RN×k. For dimension k = k(κ), number of samples N = N(κ),
Hamming weight of a noise vector t = t(κ), and a ringR, we say that the decisional (D,C,R)-LPN(N, k, t)
problem is (T, ϵ)-hard if for every probabilistic distinguisher B running in time T , we have∣∣∣∣ PrA,s,e

[B(A, b = A · s+ e) = 1]− Pr
A,u

[B(A,u) = 1]

∣∣∣∣ ≤ ϵ,

where A ← C(k,N,R), s ← Rk, e ← Dt,N (R) and u ← RN . We say that the computational
(D,C,R)-LPN(k,N, t) problem is (T, ϵ)-hard if for every probabilistic algorithm B running in time T ,
we have

Pr
A,s,e

[B(A, b = A · s+ e) = (s, e)] ≤ ϵ,

where A, s, e are defined as above.

In the above definition, both T and ϵ are functions of computational security parameter κ. Following the
previous work, we consider the following families of noise distributions:

• Bernoulli. Let Ber(R) = {Berµ,N (R)}µ,N be the family of Bernoulli distributions. In particular,
Berµ,N (R) is a Bernoulli distribution with parameters µ,N over a ringR, such that each component in
a noise vector sampled from Berµ,N (R) is a uniform element in R with probability µ and 0 otherwise.
Following prior works (e.g., [DKL09, BCGI18, CRR21, JLS21]), we adopt such Bernoulli definition which
samples a uniform element in R with probability µ. Note that the definition is equivalent to sampling
a uniform non-zero element in R with probability µ(|R| − 1)/|R| for each component. One notational
benefit we enjoy with this definition is that if e follows Berµ,N (R) then any bit vector, formed by taking
one bit from each corresponding component in e, follows Berµ,N (F2) for the same parameter µ.

• Exact. Let HW(R) = {HWt,N (R)}t,N be the family of exact noise distributions. In particular, for
HWt,N (R), each component of a noise vector is a uniform non-zero element in t random positions and
zero elsewhere. Informally, we refer to LPN with exact noise distributions as exact-LPN.

• Regular. To achieve better efficiency, a series of works, e.g., [AFS05, HOSS18, BCGI18, BCG+19b,
BCG+19a, YWL+20, WYKW21, BCG+22, BCCD23, CCJ23], adopt the family of regular noise distribu-
tions, denoted by RHW(R) = {RHWt,N (R)}t,N . In addition to fixed Hamming weight, the noise vector
is further divided into t consecutive sub-vectors of size ⌊N/t⌋, where each sub-vector has a single noisy
coordinate. Sometimes, we refer to LPN with regular noise distributions as regular-LPN.

The existing LPN-based PCG-like protocols adopt the latter two noise distributions, and the standard LPN
assumption adopts the Bernoulli distribution. While the standard LPN assumption uses random linear codes
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to instantiate C (i.e., sampling A uniformly at random), multiple LPN-based protocols adopt other kinds of
linear codes to obtain faster computation, including local linear codes [Ale03], quasi-cyclic codes [MBD+18],
MDPC codes [MTSB13], expand-accumulate codes [BCG+22] etc. We do not analyze the hardness of LPN
problems based on quasi-cyclic codes, which needs to take into account the effect of the DOOM attack [Sen11]
that allows providing

√
N computational speedup. We are not aware that other kinds of linear codes listed as

above lead to significantly better attacks, compared to random linear codes. The reductions given in this work
focus on the case of random linear codes, and we leave that extending them to other linear codes as a future
work. To simplify the notation, we often omit C from the (D,C,R)-LPN(N, k, t) problem, and only write
(D,R)-LPN(N, k, t).

Below, we define the dual-LPN assumption over a general finite ring R with a family D of noise
distributions, where both the decisional version and search version are described. Dual-LPN is also known as
syndrome decoding.

Definition 2 (Dual LPN). Let D(R) and C be as in Definition 1. For two integers N,n with N > n, we
define

C⊥(N,n,R) =
{
H ∈ Rn×N : H ·A = 0, A ∈ C(N − n,N,R), rank(H) = n

}
.

For output length n = n(κ), number of samples N = N(κ), noise-vector Hamming weight t = t(κ),
we say that the decisional (D,C⊥,R)-dual-LPN(N,n, t) problem is (T, ϵ)-hard if for every probabilistic
distinguisher B running in time T :∣∣∣∣PrH,e

[B(H,H · e) = 1]− Pr
H,u

[B(H,u) = 1]

∣∣∣∣ ≤ ϵ,

where H← C⊥(N,n,R), e← Dt,N (R) and u← RN .
We say that the computational (D,C⊥,R)-dual-LPN(N,n, t) problem is (T, ϵ)-hard if for every probabilistic
algorithm B running in time T , we have

Pr
H,e

[B(H,H · e) = e] ≤ ϵ,

where H, e are defined as above.

For any fixed code generation algorithm C and noise distribution D, the dual-LPN problem defined as
above is equivalent to the primal-LPN problem from Definition 1 with dimension k = N − n and the number
of samples N . The direction transforming an LPN instance into a dual-LPN instance directly follows the
simple fact that H · (A · s+ e) = (H ·A) · s+H · e = H · e, as H is the parity-check matrix of the code
generated by A. The reverse direction can be obtained in a way similar to [MM11, Lemma 4.9].

3 The Hardness of LPN with Regular Noise Distributions

A series of MPC and ZK protocols (e.g., [AFS05, HOSS18, BCGI18, BCG+19b, BCG+19a, YWL+20,
WYKW21, DIO21, BMRS21, YSWW21, BCG+22, BBMH+21, DILO22b, BBMHS22, WYY+22, BCCD23,
CCJ23]) rely on the hardness of LPN problems with regular noise distributions. Multiple prior works,
e.g., [BCGI18, BCG+19b, BCG+19a, YWL+20, BCG+22, CCJ23], believe that regular-LPN problems are
not significantly easier than exact-LPN problems, or even harder than exact-LPN for a part of parameter
sets. However, no reduction from exact-LPN to regular-LPN was provided, until the recent work by Feneuil,
Joux and Rivain [FJR22]. They introduced a reduction from a (dual)-LPN problem with a regular noise
distribution to that with an exact noise distribution, which is summarized in the following theorem. 4

4 In particular, [FJR22] considers a d-split noise, which consists of d blocks of length N/d and each block has weight t/d. For
d = t, it corresponds to the (most often used) case of regular noise.
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Theorem 1 (Theorem 1 of [FJR22], adapted). If an exact-LPN problem (HW,F)- LPN(N, k, t) is (T ,
ϵ)-hard, the regular-LPN problem (RHW,F)-LPN(N, k, t) is(

T,

(
N
t

)
(Nt )

t
· ϵ

)
-hard.

The statement also holds for dual-LPN.

The above reduction suffers from a significant security loss, i.e., the penalty factor

pt =

(
N

t

)/(N
t

)t
=
( tt
t!

)
·
t−1∏
i=1

(1− i

N
) = et−Θ(ln t)−Θ(t2/N) = et·(1−o(1)),

where the Stirling’s approximation ln(t!) = t · ln t − t + Θ(ln t) is used, and 4−x ≤ 1 − x ≤ e−x for
0 ≤ x ≤ 1/2. Here we focus on the case of t = o(N), which is satisfied by low-noise LPN problems used in
the PCG setting. Meanwhile, it is not hard to see that for many non-trivial parameter selections, we have
ϵ > e−t. Let us analyze the following dual-LPN problem

[H1 H2] ·
(
e1
e2

)
= H1 · e1 +H2 · e2 = y,

where H1 ∈ Fn×n
q , H2 ∈ Fn×(N−n), e1 ∈ Fn and e2 ∈ FN−n. A polynomial-time attack simply bets

e2 = 0 and computes e1 = H−11 · y (without loss of generality, assuming that H1 is invertible), which
succeeds with probability(

n

t

)/(N
t

)
=

N−n∏
i=1

(
n− t+ i

n+ i

)
>

(
1− t

n+ 1

)N−n
≈ e−

t(N−n)
n+1 .

If N ≤ 2n, a larger penalty factor pt only implies that the regular-LPN problem (RHW,F)-LPN(N, k, t)
becomes (poly(κ), pt · ϵ)-hard, where pt · ϵ > 1. Thus, this motivates us to decrease the penalty factor to
yield more conservative (yet still meaningful) results.

Prior work [FJR22] incurs a significant security loss, because it simply uses 1/pt to account for the
probability that an exact noise vector is regular at the same time. We provide a new reduction with a new
parameter α such that [FJR22, Theorem 1] can be seen as a special case of α = 1. More importantly, with
large α, we are able to reduce the security loss dramatically by dividing the exponent by α, while paying only
an additive price αt in dimension and number of samples.

At a high level, we give an overview of the proof idea. Given exact-LPN samples (A, b = A ·s+e) with
dimension k and noise weight t, we divide them into αt blocks, i.e., (Ai, bi = Ai · s+ ei) for i ∈ [1, αt],
where α is an additional parameter. Instead of hoping that every ei has exact weight 1 (as done by Feneuil
et al. in [FJR22]), we relax the condition to |ei| ≤ 1, which occurs with higher probability (and hence less
security loss), especially for large α. For each block, we add an extra random sample (ai, vi = ⟨ai, s⟩+ ẽi)
such that the vector (eTi , ẽi) has the exact weight 1 (i.e., the resulting noise vector is regular). This is possible
if the dimension of the target regular-LPN problem is k + αt. That is, the additional αt values would help to
simulate αt values {vi} almost perfectly.

Theorem 2. Let t,N ∈ N, and α ≥ 2 such that αt ∈ N and (αt)|N . If the exact-LPN problem
(HW,F)-LPN(N, k, t) is (T ,ϵ)-hard, then the regular-LPN problem (RHW,F)-LPN(N + αt, k + αt, αt) is
(T − poly(N, k), 2

t
α · ϵ)-hard, where F is any finite field.
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Proof. Let N = αtm for some m ∈ N. We parse the exact-LPN samples of (HW,F)-LPN(N, k, t) as αt
blocks:

A
def
=

 A1 ∈ Fm×k

...
Aαt ∈ Fm×k

 , b
def
=

 b1 = (A1 · s+ e1) ∈ Fm

...
bαt = (Aαt · s+ eαt) ∈ Fm

 , where s← Fk.

Let E be the event (not explicitly stated hereafter) that for every i ∈ [1, αt], the ei’s weight |ei| ≤ 1. Then,
we have that E occurs with probability

Pr
(eT1 ,...,e

T
αt)←HWt,N (F)

[
E
]
=

(
αt
t

)
·
(
N
αt

)t(
N
t

) =
t−1∏
i=1

(1− i
αt)

(1− i
N )

>
4

t−1∑
i=1
− i

αt

1
= 2

1
α
− t

α ,

where the inequality is due to 1 − x ≥ 4−x for 0 ≤ x ≤ 1/2, and x = i
αt < 1

α ≤ 1/2. Our analysis is
conditioned on E , and thus incurs a security loss of factor 2

1
α
− t

α . Sample row vectors rT1 , . . . , r
T
αt ← Fk+αt.

Condition on that they are linearly independent, which has probability more than 1 − |F|−k (see, e.g.,
[KOS15, YS16]), pick any full-rank matrix B ∈ Fk×(k+αt) such that M defined below has full rank

M
def
=


B
rT1
...

rTαt

 ∈ F(k+αt)×(k+αt) .

We denote the secret of a regular LPN instance by x← Fk+αt, subject to B ·x = s. For each i ∈ [1, αt], we
also define a random element ui ∈ F\{0} as follows:

ui
def
=

{
the non-zero entry of ei, if |ei| = 1
sample a fresh ui ← F\{0}, if |ei| = 0

(recall |ei| ≤ 1 conditioned on E).

Let Ci
def
=

[
Ai ·B

rTi − 1T · (Ai ·B)

]
, b′i

def
=

[
bi = Ai ·B · x+ ei

vi = rTi · x+ ui − 1T · bi

]
for i ∈ [1, αt] ,

where 1T is the all-ones row vector (i.e., every component is 1). It is easy to verify that b′i = Ci · x +[
ei

ui − 1T · ei

]
and the noise vector (eTi , ui − 1T · ei) has an exact weight 1. 5 Now we argue (Ci,b

′
i) can

be efficiently simulated. Since x is uniform over Fk+αt, we have that M · x is uniformly random over Fk+αt

for any full-rank matrix M. Therefore,
(
rT1 · x, . . . , rTαt · x

)
is uniformly random over Fαt, even conditioned

on M, B · x and other variables (e.g., all the Ai’s, ei’s, ui’s). Thus, even without knowledge of ui and ei,
the reduction can perfectly simulate the additional sample vi = rTi · x+ ui − 1T · bi by sampling vi ∈ F
uniformly at random.

However, (Ci,b
′
i) doesn’t constitute the i-th block of the regular-LPN instance, since Ai ·B (as part of

Ci) is not uniform over Fm×(k+αt) (but sampled from a k-dimensional subspace). We first complete the rest
proof for the special case F = F2 and then proceed to the general case of any finite field F with |F| > 2.

CASE 1: F = F2. In this case, we have that ui is always 1 (i.e., the only non-zero element in F2). We sample
a random matrix Pi ← Fm×αt for each i ∈ [1, αt]. We define the following LPN samples, which have the

5Strictly speaking, the noise vector is ensured to have Hamming weight 1, but its coordinates may not take non-zero values with
equal probability. The issue can be easily addressed by shuffling the matrices and samples accordingly.
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same weight-1 noise (eTi , ui − 1T · ei) as (Ci, b
′
i).

[
[Ai∥Pi] ·M

rTi − 1T · (Ai ·B)

]
,

[
bi
vi

]
+

Pi ·

 1T · b1 + v1 − 1
...

1T · bαt + vαt − 1


0


 , (1)

which can be verified by comparing their difference, i.e.,

[Ai∥Pi] ·M · x+ ei

=(Ai ·B · x+ ei) +Pi ·

r
T
1 · x

...
rTαt · x

 = bi +Pi ·

 1T · b1 + v1 − 1
...

1T · bαt + vαt − 1

 .

Furthermore, the matrices in (1) are 2/|F|k-close to uniform ones, which is proved in the following Lemma 2.
Therefore, for each i ∈ [1, αt], the LPN samples in (1) constitute the i-th block of a regular-LPN instance
(RHW,F)-LPN(N + αt, k + αt, αt). Therefore, we just feed all αt blocks as per (1) to the solver against
(RHW,F)-LPN(N +αt, k+αt, αt). If it returns x, then we recover the secret vector s := B ·x of the exact-
LPN instance (HW,F)-LPN(N, k, t). Quantitatively, if one breaks (RHW,F)-LPN(N+αt, k+αt, αt) with
probability p, then it can also break (HW,F)-LPN(N, k, t) with probability at least 2

1
α
− t

α · (p− 2 · |F|−k) ≥
p · 2−

t
α .

CASE 2: |F| > 2. In this case, we have that ui is uniform over F\{0}. The reduction can be oblivious
of ui by letting the secret absorb ui. We define x′ such that B · x′ ≡ B · x and for all i ∈ [1, αt],
rTi · x′ ≡ rTi · x+ ui − 1, i.e.,

M · x′ ≡M · x+
(
h

def
= [0, . . . , 0︸ ︷︷ ︸

k

, (u1 − 1), . . . , (uαt − 1)]T
)

,

which is always possible by letting x′
def
= x+M−1 ·h for any invertible M. Therefore, the reduction in Case

1 still works in Case 2 by considering x′ instead of x, where B · x′ = s and rTi · x′ = 1T · bi + vi − 1 just
like in Case 1.

Lemma 2. Let Ai, Pi, rTi for i ∈ [1, αt], B and M be as defined in the proof of Theorem 2. Then,

SD

(([ [A1∥P1] ·M
rT1 − 1T(A1B)

]
, . . . ,

[
[Aαt∥Pαt] ·M
rTαt − 1T(AαtB)

])
, (U

(m+1)×(k+αt)
F )αt

)
≤ 2 · |F|−k,

where SD(·, ·) denotes the statistical distance between two distributions, and Um×n
F denotes the uniform

distribution over Fm×n.

Proof. Let Eind be the event that rT1 , . . . , r
T
αt are linearly independent. Following previous work (e.g.,

[KOS15, YS16]), we have that Pr[Eind] > 1− |F|−k. Conditioned on Eind, the square matrix M is invertible.
Together with the uniformity of (Ai,Pi) for i ∈ [1, αt], we obtain that [A1∥P1] ·M, . . . , [Aαt∥Pαt] ·M
are identically distributed to (U

m×(k+αt)
F )αt and are independent of rT1 , . . . , r

T
αt (despite that rTi is a part of

M). Furthermore, we have

SD

(([[Ai∥Pi] ·M
rTi

]
,AiB

)
i∈[1,αt]

,
([[Ai∥Pi] ·M

U
1×(k+αt)
F

]
,AiB

)
i∈[1,αt]

)
≤ |F|−k ,
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which implies

SD

(([ [Ai∥Pi] ·M
rTi − 1T(AiB)

])
i∈[1,αt]

,
([[Ai∥Pi] ·M

U
1×(k+αt)
F

])
i∈[1,αt]

)
≤ |F|−k .

Combining with the fact that
(
[Ai∥Pi

]
·M)i∈[1,αt] is |F|−k-close to (U

m×(k+αt)
F )αt, we complete the proof

by a triangle inequality.

We are able to obtain a similar result for dual-LPN in the following Corollary 1 via the reductions between
LPN and dual-LPN (see Section 2.2).

Corollary 1. Let t,N ∈ N and α ≥ 2 such that αt ∈ N and (αt)|N . If the exact-dual-LPN problem
(HW,F)-dual-LPN(N,n, t) is (T ,ϵ)-hard, then the regular-dual-LPN problem (RHW,F)-dual-LPN(N +

αt, n, αt) is (T − poly(N,n), 2
t
α · ϵ)-hard.

The reduction underlying Theorem 2 can be generalized to that from standard LPN (with Bernoulli or
exact noise distributions) to LPN with d-split noise distributions (refer to Footnote 4). To avoid redundancy,
we sketch how to adapt the proof. Similar to the proof of Theorem 2, for each i-th block (1 ≤ i ≤ αd),
introduce t/d additional random samples in the form of

{(ai,j , vi,j = ⟨ai,j , s⟩+ ẽi,j)}j∈[1,t/d]

such that the vector (eTi , ẽi,1, · · · ẽi,t/d) possesses an exact weight of t/d. This incurs less security loss than
Theorem 2 as it only requires |eTi | ≤ t/d (instead of |eTi | ≤ 1) when the dimension of the target αd-split LPN
problem is k + αt. Consequently, the additional αt dimensions help to realize the almost-perfect simulation
of αt values {vi,j}.

4 The Hardness of LPN over Integer Rings

LPN over an integer ring (e.g., Z2λ) has been used in VOLE and ZK protocols [SGRR19, BBMH+21,
BBMHS22, LXY23], where these VOLE protocols could also benefit other works that need VOLE over
integer rings like the MPC protocol SPDZ2k [CDE+18, DEF+19]. The current security estimate of LPN
over Z2λ in prior works is directly adapted from that for LPN over a field F of size |F| ≈ 2λ [BCGI18]. As
we will show in this section the hardness of LPN over Z2λ is more related to that over F2 (rather than that
over the λ-bit field). As depicted in Figure 2, we provide the following reductions between the hardness of
LPN over Z2λ and that over F2.

• Decisional LPN over Z2λ → Decisional LPN over F2. We show that distinguishing LPN over Z2λ with
noise weight t is no harder than distinguishing LPN over F2 with noise weight 2(λ−1)

2λ−1 · t ≈ t/2. This
reduction directly gives an attack that reduces the noise weight by half for an LPN instance over Z2λ .

• Decisional LPN over F2 → Decisional LPN over Z2λ . We show that distinguishing LPN over F2

with noise weight t is no harder than the distinguishing attack on LPN over Z2λ with 1) non-standard
Bernoulli-like integer noise of weight at most λ · t; and 2) standard Bernoulli noise of weight ≈ 2λ · t.

• Computational LPN over Z2λ → Computational LPN over F2. We show that a secret recovery attack
on LPN over Z2λ with noise weight t is no harder than that on LPN over F2 with noise weight roughly t/2.
While a generic reduction requires kω(λ)-hardness for LPN over Z2λ , we also give more efficient reductions
for their weakly one-wayness that is more relevant to practical attacks and security estimates. We also
discuss how to optimize the secret recovery attack on LPN over Z2λ based on that over F2 in practice.
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We give similar reductions for LPN over a ring Zpλ1qλ2 (for any distinct primes p, q) in Appendix A, which
can be further generalized to any ring ZN for an integer N . All these reductions focus on the case of
(primal)-LPN, and are easy to generalize to the case of dual-LPN. When we give the reductions between
different computational LPN variants, we assume that LPN over a field in consideration has a unique solution
in the average case (except for a negligible fraction), which will simplify the analysis. Note that this is true
for most interesting parameter regimes of LPN, which give rise to cryptographic applications (e.g., PCG and
public-key encryption). In particular, we have the following lemma.

Lemma 3 (Unique decoding of LPN over any finite field F). For any N > k + 4t logN , the following
probability is bounded by N2t

|F|N−k−2t .

Pr
A←FN×k

[
∃s1 ̸= s2 ∈ Fk, e1, e2 ∈ FN : |e1|, |e2| ≤ t ∧ (A · s1 + e1 = A · s2 + e2)

]
.

Proof. Let s def
= s1 − s2 ∈ Fk and e

def
= e2 − e1 ∈ FN . For any s ̸= 0, A · s is uniform over FN . Together

with |e| ≤ 2t, the probability that A · s = e is at most
∑2t

i=0

(
N
i

)
/|F|N−i ≤

(∑2t
i=0

(
N
i

))
/|F|N−2t ≤

N2t/|F|N−2t. We obtain the bound claimed in the lemma by a union bound on all possible s ∈ Fk.

For the concrete security of an LPN instance LPN(N, k, t) over Z2λ , we can first reduce it to LPN(N, k, 2
(λ−1)

2λ−1 t)
over F2, and then estimate the bit security of the LPN instance over F2 as demonstrated in Section 5. Thus,
we omit the detailed analysis of concrete LPN over Z2λ . In the subsequent work, Baum et al. [BBMHS22]
gave a countermeasure by sampling an invertible element in Z2λ at random for each noisy coordinate to resist
our attack. Given the countermeasure, we can reduce an LPN problem over a ring Z2λ to that over F2 with
the same noise weight, using the same approach shown in Section 4.1. In other words, LPN over Z2λ is no
harder than LPN over F2 under the same parameters. Therefore, when estimating the bit security of LPN
over Z2λ , one needs to use the cost of attacking LPN over F2 as an upper bound.

4.1 Reduction from Decisional LPN over Z2λ to LPN over F2

We start with a simple observation that the distinguishing attack on LPN over Z2λ can be based on that over
F2 with roughly halved noise weight. Specifically, we have the following theorem.

Theorem 3. If the decisional exact-LPN problem (HW,Z2λ)-LPN(N, k, t) is (T, ϵ)-hard, then the decisional
exact-LPN problem (HW,F2)-LPN(N, k, 2

(λ−1)

2λ−1 t) is (T − poly(N, k), O(
√
t · ϵ))-hard.

The above statement can be generalized to the case of Bernoulli distributions. If the decisional LPN
problem (Ber,Z2λ)-LPN(N, k, µ) is (T, ϵ)-hard, then the decisional LPN problem (Ber,F2)-LPN(N, k, µ)
is (T − poly(N, k), O(ϵ))-hard.

Proof. Given LPN samples over a ring Z2λ (A, b = A · s+ e), we observe that least significant bits (LSBs)
of these samples (A0 := A mod 2, b0 := b mod 2) constitute exactly the LPN samples over F2 for noise
e0 = e mod 2. In case that e ← HWt,N (Z2λ), the noise vector e0 follows a Bernoulli-like distribution
over FN

2 , which is sampled by first picking t out of N coordinates at random and then filling in these t
coordinates with random non-zero elements over Z2λ (and the rest with zeros). Thus, overall e0 has expected
weight t′ = 2(λ−1)

2λ−1 · t, where 2(λ−1)

2λ−1 is the probability that a random non-zero element of Z2λ is odd. By
Lemma 1, this implies that with probability Ω(1/

√
t), the noise vector e0 follows the exact noise distribution

HWt′,N (F2). On the other hand, the LSBs of (A,u) with a uniform u ∈ Z2λ are uniform as well. Therefore,
one can use the solver of (HW,F2)-LPN(N, k, t′) to distinguish (A0, b0) from uniform samples. The proof
for the second statement is likewise, except when taking the LSBs of e← Berµ,N (Z2λ) we immediately get
e0 ∼ Berµ,N (F2) as desired.
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Despite the preserved noise probability µ in the case of Bernoulli distribution, we note that Berµ,N (Z2λ)
has expected weight (1− 2−λ)µN , while Berµ,N (F2) has expected weight µN/2 that is roughly 2× smaller
than Berµ,N (Z2λ). We can transform regular-LPN samples into exact-LPN samples by randomly shuffling
these samples, and thus obtain a reduction from the decisional regular-LPN problem (RHW,Z2λ)-LPN(N, k, t)

to the decisional exact-LPN problem (HW,F2)-LPN(N, k, 2
(λ−1)

2λ−1 t). The reductions directly give an efficient
attack to reduce the noise weight of an exact-LPN or regular-LPN instance over a ring Z2λ by half.

4.2 Reduction from LPN over F2 to Decisional LPN over Z2λ

We first show that the LPN assumption over F2 implies that over Z2λ under the standard Bernoulli noise
distribution. However, we achieve the goal by paying a price in the security loss due to the dependence
among different noise vectors. As a result, we get the very conservative statement that decisional LPN over
F2 with noise weight t is no harder than decisional LPN over Z2λ with noise weight roughly 2λt. We then
introduce more useful Bernoulli-like noise distributions to enable more efficient reductions. In particular, we
can reduce to an LPN over Z2λ with noise weight λt.

Theorem 4. If decisional (Ber,F2)-LPN(N, k, µ/2λ) is (T, ϵ)-hard, then decisional (Ber,Z2λ)-LPN(N, k, µ)
is (T − poly(N, k), λ · ϵ)-hard.

Proof. Let (A, b = A · s + e) be LPN samples over Z2λ . Decompose the matrix and vectors into λ
ones over F2 as follows: (A0,A1, · · · ,Aλ−1) := BitDecomp(A), (s0, s1, · · · , sλ−1) := BitDecomp(s),
(e0, e1, · · · , eλ−1) := BitDecomp(e) and (b0, b1, · · · , bλ−1) := BitDecomp(b). Therefore, for i ∈ [λ], bi

depends only on A, (si, . . . , s0), (ei, . . . , e0), and we write it as

bi = A0 · si + ei + fi
(
A,S(0, i− 1),E(0, i− 1)

)
mod 2 ,

where S(0, i− 1)
def
= (si−1, . . . , s0), and E(0, i− 1)

def
= (ei−1, . . . , e0), and fi sums up the other terms not

depending on si and ei. Define the hybrid distributions

H0 = (A,u0, · · · ,ui−1,ui · · · ,uλ−1)

...

Hi = (A, b0, · · · , bi−1,ui · · · ,uλ−1)

...

Hλ = (A, b0, · · · , bi−1, bi · · · , bλ−1)

where uj ← FN
2 for j ∈ [λ] is sampled independently at random. Note that all the si’s are independent and

uniformly random. Therefore, for i ∈ [λ], by the decisional (Ber,F2)-LPN assumption,(
A0,ui,S(0, i− 1),E(0, i− 1)

)
≈c

(
A0,A0 · si + ei mod 2,S(0, i− 1),E(0, i− 1)

)
where S(0, i − 1) is independent of any other variables, and the actual noise rate of LPN is that of ei

conditioned on E(0, i− 1) (see analysis blow). This implies(
A, b0, · · · , bi−1,ui + fi(A,S(0, i− 1),E(0, i− 1)) mod 2

)
≈c

(
A, b0, · · · , bi−1, bi

)
which in turn implies Hi ≈c Hi+1, where b0, . . . , bi−1, fi(A,S(0, i − 1),E(0, i − 1)) can be efficiently
computed from A,S(0, i− 1),E(0, i− 1).

Therefore, if all the adjacent Hi and Hi+1 are computationally indistinguishable except with probability
ϵ, then H0 and Hλ are computationally indistinguishable by a hybrid argument except with probability
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λ · ϵ. It thus remains to estimate the noise rate needed by the LPN assumption. Consider a single noise
sample (e0[j], e1[j], . . . , eλ−1[j])← Berµ,N (Z2λ), where ei[j] is the j-th entry of ei. Conditioned on any
non-zero (e0[j], . . . , ei−1[j]), ei[j] is uniformly random and thus unconditionally masks the corresponding
bi[j]. Otherwise, we have that

Pr
[
ei[j] = 1

∣∣ (e0[j], . . . , ei−1[j]) = 0i
]
=

µ · 2−(i+1)

1− µ+ µ · 2−i
≥ µ · 2−(i+1)

is the noise rate needed to keep the computational indistinguishability between Hi and Hi+1, which reaches
its minimum µ · 2−λ when i = λ− 1.

Based on the above theorem, we easily obtain the following corollary.

Corollary 2. If decisional (Ber,F2)-LPN(N, k, µ/2λ) is hard, then computational (HW,Z2λ)-LPN(N, k, t =
(1− 2−λ)µN) is hard.

Proof. By Theorem 4, it suffices to show that decisional (Ber,Z2λ)-LPN implies its computational analogue,
which in turn implies computational (HW,Z2λ)-LPN. The former is trivial and thus it left out to show
the latter. For e ← Berµ,N (Z2λ), the noise vector e has expected (instead of exact) Hamming weight
(1 − 2−λ)µN . The difference is not substantial for computational problems as conditioned on |e| =
(1− 2−λ)µN , which has probability Ω(1/

√
N), based on Lemma 1. Therefore, with probability Ω(1/

√
N),

e follows the exact-weight distribution HW(1−2−λ)µN,N (Z2λ), which completes the proof.

The dependency among the noise vectors {ei} incurs a significant loss during the reduction. This
motivates us to introduce two specific noise distributions, i.e., IndBerµ,N (Z2λ) and IndHWt,N (Z2λ), where
Ind refers that the noise’s bit-decomposition e0, . . ., eλ−1 are independent and identically distributed, and
parameter µ (resp., t) is noise rate (resp., weight) of each ei.

• IndBerµ,N (Z2λ) is bit-wise independent. By e← IndBerµ,N (Z2λ), we mean that e :=
∑λ−1

i=0 2i ·ei ∈ Z2λ

with ei ← Berµ,N (F2) for i ∈ [λ]. The noise rate of IndBerµ,N (Z2λ) is the probability that a coordinate of
e is non-zero, i.e., 1− (1− µ/2)λ ≤ λµ/2 by Bernoulli’s inequality. Therefore, the expected Hamming
weight of e← IndBerµ,N (Z2λ) is λt where t = µN/2.

• IndHWt,N (Z2λ) decomposes into λ independent vectors from HWt,N (F2). By e← IndHWt,N (Z2λ), we
mean that e :=

∑λ−1
i=0 2i · ei with ei ← HWt,N (F2) for i ∈ [λ]. It is easy to see that the Hamming weight

of e is at most λt.

Although IndBerµ,N (Z2λ) and IndHWt,N (Z2λ) have not been used in existing protocols, LPN with such
noise distributions can be used to design PCG-like VOLE protocols by running these protocols with maximum
weight λt. The PCG-like VOLE protocols employing the non-standard noise distributions are approximately
λ/2 times less efficient than the state-of-the-art protocol [BBMHS22] using LPN with regular noise distribu-
tions over Z2λ . Despite their lower efficiency, these PCG-like VOLE protocols enjoy (1) that the underlying
LPN problem over Z2λ is tightly equivalent to LPN over F2; (2) a simpler approach to detect malicious
behaviors. Below, we show that decisional LPN over F2 with noise weight t is tightly equivalent to decisional
LPN over Z2λ with noise weight roughly λt under the new noise distributions.

Theorem 5. Let (D1,D2, w) ∈ {(Ber, IndBer, µ), (HW, IndHW, t)} and we have:

• If decisional (D1,F2)-LPN(N, k,w) is (T, ϵ)-hard, then decisional (D2,Z2λ)- LPN(N, k,w) is (T −
poly(N, k), λ · ϵ)-hard.

• If decisional (D2,Z2λ)-LPN(N, k,w) is (T, ϵ)-hard, then decisional (D1,F2)- LPN(N, k,w) is (T −
poly(N, k), ϵ)-hard.
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Algorithm 1: ALPN
2λ

, the secret recovery algorithm on LPN over Z2λ (λ ≥ 2) with oracle access
to ALPN2 (the solver for LPN over F2).

Input: (D,Z2λ)-LPN(N, k, t) samples (A, b = A · s+ e mod 2λ)
Output: s ∈ Z2λ

1 (A0,A1, · · · ,Aλ−1) := BitDecomp(A);
2 (b0, b1, · · · , bλ−1) := BitDecomp(b);
3 (s0, e0)← ALPN2(A

0, b0);
4 b′ := (b−A · s0 − e0)/2 mod 2(λ−1);

5 Return s = s0 + 2 · ALPN
2(λ−1)

(
A′ :=

∑λ−2
i=0 2i ·Ai ∈ Z2λ−1 , b′

)
.

Proof. The proof of the first statement is similar to that of Theorem 4, except that now every ei is independent
of the previous e0, · · · , ei−1, where ei follows Berµ,N (F2) by the definition of e← IndBerµ,N (Z2λ). The
proof of the second statement can be trivially adapted from that of Theorem 3, i.e., A0 = A mod 2,A0 ·
s0 + e0 = A · s+ e mod 2.

On the choice of matrix A. As we can see from the proofs of Theorem 4, Theorem 5 and Theorem 6
(shown in Section 4.3), all the reductions only rely on that A0 is uniformly distributed over FN×k

2 while
A1, · · · ,Aλ−1 can be arbitrary (or even zero matrix), where (A0,A1, . . . ,Aλ−1) := BitDecomp(A). In
other words, it suffices to use a Boolean matrix A = A0, and the choices of A1, . . . ,Aλ−1 do not introduce
any further hardness to the LPN problem over Z2λ . Overall, we give a positive result that LPN over a ring
Z2λ with Boolean matrices is secure if the corresponding LPN over binary field F2 is secure.

4.3 Reduction from Computational LPN over Z2λ to LPN over F2

In the computational setting, we show that an LPN instance over Z2λ can be efficiently translated to λ
instances of LPN over F2, which are independent except that they share the same random matrix A0 over F2

and that the noise vectors of the λ instances are somehow correlated. We refer to the proof of Theorem 6 on
how to address the correlation issue. Here we give a reduction from computational LPN over a ring Z2λ to
that over F2 by extending the corresponding reduction between their decisional versions shown in Section 4.1.
Algorithm 1 shows how computational LPN over Z2λ is reduced to that over Z2λ−1 , whose correctness is
analyzed in Lemma 4. Note that by recursion, ALPN

2λ
degenerates to secret recovery algorithm for LPN over

F2 when λ = 1. Without loss of generality, we assume that ALPN2 returns the noise vector in addition to the
recovered secret.

Lemma 4. Let (A, b = A · s + e mod 2λ) be the LPN samples over Z2λ , then (A′, b′) as defined in
Algorithm 1 constitute the LPN samples over Z2(λ−1) , where A′ =

∑λ−2
i=0 2i·Ai mod 2(λ−1), b′ = A′·s′+e′

mod 2(λ−1), s′ =
∑λ−1

i=1 2i−1 · si mod 2(λ−1) and e′ =
∑λ−1

i=1 2i−1 · ei mod 2(λ−1).

Proof. Let (A0,A1, · · · ,Aλ−1) and (b0, b1, · · · , bλ−1) be the matrices and vectors defined in Algorithm 1.
Let (s0, s1, · · · , sλ−1) := BitDecomp(s) and (e0, e1, . . . , eλ−1) := BitDecomp(e). Note that A′ is
obtained from A by truncating the most significant bits (MSBs), and thus follows the distribution in LPN over
Z2(λ−1) . It suffices to prove b′ = A′·s′+e′ mod 2(λ−1), where s′ =

∑λ−1
i=1 2i−1·si and e′ =

∑λ−1
i=1 2i−1·ei

are the secret and noise of LPN over Z2(λ−1) respectively. In particular, we have the following:

2 · b′ − 2 · (A′ · s′ + e′) = b−A · s0 − e0 − 2 · (A′ · s′ + e′)

= b−A · s0 − e0 −A · (s− s0)− e+ e0

= b−A · s− e = 0 mod 2λ ,
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where 2 ·A = 2 ·A′ mod 2λ and 2 ·e′ = e−e0. Therefore, we have b′ = A′ ·s′+e′ mod 2(λ−1), which
completes the proof.

Below, we show that (ϵλ+1)-hard computational LPN over Z2λ implies (2ϵ)-hard LPN over F2. Here
λ = O(1) needs to be small in general for polynomial hardness, and it can be up to λ = kΘ(1) for
sub-exponential hardness, e.g., λ = k0.25 and ϵ = 2−k

0.25
.

Theorem 6. If computational (D1,Z2λ)-LPN(N, k,w) is (λ·T+poly(N, k), ϵλ+1)-hard, then computational
(D2,F2)-LPN(N, k,w) is (T, 2ϵ)-hard, where (D1, D2, w)∈ {(Ber,Ber, µ), (IndBer,Ber, µ), (IndHW,HW, t)}.

Proof. For contradiction assume that there exists an algorithm ALPN2 that recovers the secret of LPN over F2

with probability more than 2ϵ within time T . It suffices to prove the case (D1, D2, w) = (Ber,Ber, µ). For
proof convenience, consider distribution Berµ,N (F2) being sampled in two steps: (1) pick each coordinate
with probability µ independently (and let the rest with 0’s); and (2) assign the picked coordinates with uniform
random bits. 6 Let A0, si and ei for i ∈ [λ] be the vectors defined in Lemma 4. By Markov inequality, there
exists at least an ϵ fraction of good (A0,coin(ei)) for which ALPN2 recovers si from (A0,A0 · si + ei) with
probability at least ϵ, where coin(ei) denotes the step-1 random coin for sampling ei, and the probability is
taken over the si and the step-2 coin of ei. Therefore, ALPN

2λ
(see Algorithm 1) invokes ALPN2 on (A, b =

A · s+ e mod 2λ) for λ times and recovers s with an overall probability of at least ϵλ+1, a contradiction to
the assumption. The proofs for the other two cases (i.e., (D1, D2, w) ∈ {(IndBer,Ber, µ), (IndHW,HW, t)})
are slightly simpler because e0, . . ., eλ−1 are independent and thus no two-step sampling is needed, i.e.,
coin(ei) is empty.

Below, we further prove the following theorem.

Theorem 7. If computational (HW,Z2λ)-LPN(N, k, t) is (λ·T+poly(N, k), ϵλ+1)-hard, then computational
(HW,F2)-LPN(N, k, t′) is (T, 2ϵ

1−exp(−δ2t/6))-hard, where t′ = 2(λ−1)

2λ−1 (1 + δ)t for any constant δ > 0.

Proof. Let H̃Wt,N (F2) be the distribution of ei for i ∈ [λ] when e← HWt,N (Z2λ), where (e0, . . . , eλ−1) :=
BitDecomp(e). Similar to the proof of Theorem 6, we can show if there exists ALPN2 that breaks LPN
over F2 and noise distribution H̃Wt,N (F2) with probability more than 2ϵ within time T , then it can be used
to break LPN over Z2λ and noise distribution HWt,N (Z2λ) with probability ϵλ+1. The expected weight
of ei is 2λ−1

2λ−1 t, and thus by a Chernoff bound ei is a convex combination of distributions HW1,N (F2), . . .,

HWt′,N (F2) with t′ = 2λ−1

2λ−1(1 + δ)t and δ > 0, except for an error probability bounded by exp(−δ2t/6).
Since ALPN2 works on LPN over F2 with noise distribution HWt′,N (F2), it should work on that with noise
HWi,N (F2) of weight up to i = t′ (and any their convex combination) as well. 7 Therefore, ALPN2 that
breaks (HW,F2)-LPN(N, k, t′) with probability 2ϵ/(1− exp(−δ2t/6)) is the hypothetical algorithm, which
completes the proof.

Recall that we can transform regular-LPN samples into exact-LPN samples by randomly shuffling
these samples. Therefore, we are able to obtain a reduction from the computational regular-LPN problem
(RHW,Z2λ)-LPN(N, k, t) to the computational exact-LPN problem (HW,F2)-LPN(N, k, 2

(λ−1)

2λ−1 (1 + δ)t).
The above reduction suffers a significant security loss by exponent factor 1/(λ+ 1) since computationally
intractable problems typically require a small success probability for efficient adversaries. In the setting of

6The two-step sampling is defined to be in line with Berµ,N (Z2λ), and therefore captures the correlations among e0, . . ., eλ−1,
which share the same step-1 randomness.

7Strictly speaking, ALPN2 implies such an algorithm with roughly the same complexity and success probability, which can be
seen by a simple reduction.
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practical key recovery attacks, however, we often expect the success probability to be (1 − 1/poly(k)) or
even overwhelming. In this case, we get more efficient reductions as below.

Theorem 8. If the computational (D1,F2)-LPN(N, k,w) problem can be broken by ALPN2 in time T with
success probability at least (1− ϵ), then the computational (D2,Z2λ)-LPN(N, k,w) problem can be broken
by ALPN

2λ
(see Algorithm 1) in time λ · T + poly(N, k) with success probability at least 1 − (λ + 1)

√
ϵ,

where (D1, D2, w) ∈ {(Ber,Ber, µ), (Ber, IndBer, µ), (HW, IndHW, t)}.

Proof. Similar to the proof of Theorem 6, we have by a Markov inequality that for at least a (1−
√
ϵ) fraction

of (A0,coin(ei)), ALPN2 recovers si from (A0, A0 · si + ei) with probability at least 1 −
√
ϵ. Overall,

ALPN
2λ

succeeds with probability (1−
√
ϵ)(1− λ

√
ϵ) ≥ 1− (λ+ 1)

√
ϵ by a union bound.

We also give a proof of the following theorem.

Theorem 9. If the computational (HW,F2)-LPN(N, k, t′) problem can be broken by ALPN2 in time T with
success probability at least (1 − ϵ/2), then the computational (HW,Z2λ)-LPN(N, k, t) problem can be
broken byALPN

2λ
(see Algorithm 1) in time λ ·T +poly(N, k) with success probability at least 1−(λ+1)

√
ϵ,

where t′ = 2λ−1

2λ−1(1 + δ)t for any δ and ϵ satisfying δ2t ≥ 6 ln(2/ϵ).

Proof. Similar to the proof of Theorem 8, as long as we succeed in breaking the LPN problem over F2 and
noise ei with probability at least (1− ϵ), then the rest follows from Markov inequality and a union bound.
As analyzed in the proof of Theorem 7, ei is exp(−δ2t/6)-close to a convex combination of distributions
HW1,N (F2), . . ., HWt′,N (F2) with t′ = 2λ−1

2λ−1(1+ δ)t and δ > 0. Therefore, we needALPN2 to be successful
on LPN over F2 and noise HWt′,N (F2) with probability at least

1− ϵ

1− exp(−δ2t/6)
≤ 1−

(
ϵ− exp(−δ2t/6)

)
≤ 1− ϵ

2
.

Optimized attacks on (Ber/HW,Z2λ)-LPN. In practice, we optimize the attacks on (Ber/HW,Z2λ)-LPN
by exploiting the correlations among the noise vectors of the λ instances (i.e., e0, . . . , eλ−1). In particular,
Algorithm 1 recovers the corresponding secrets s0, s1, · · · , sλ−1 sequentially. That means when the attacker
works on the (i+1)-th LPN instance, it has already seen e0, . . . , ei−1 from the previous i broken instances. As
analyzed in the proof of Theorem 4, for any single noise sample (e0[j], e1[j], . . . , eλ−1[j])← Berµ,N (Z2λ),
ei[j] is uniformly random conditioned on any non-zero (e0[j], . . . , ei−1[j]), and thus sample bi[j] is useless
(encrypted by one-time padding) and should be discarded. In other words, the effective noise rate of the
i-th LPN instance is roughly µ · 2−(i+1) given the attacker’s knowledge about e0, . . . , ei−1. Therefore, the
success rate of solving the (Ber,Z2λ)-LPN(N, k, µ) instance is roughly the product of the λ instances of
(Ber,F2)-LPN with continuously halving noise rates µ, µ/2, . . ., µ/2λ−1. For instance, if solving these
instances can succeed with probability ϵ, ϵ2

−1
, . . ., ϵ2

−(λ−1)
respectively, then it leads to a success probability

of approximately ϵ2 (instead of ϵλ+1). The optimization for reducing (HW,Z2λ)-LPN to (HW,F2)-LPN is
likewise.

5 Concrete Analysis of Low-Noise LPN over Finite Fields

Recently, a series of works [BCGI18, BCG+19a, SGRR19, BCG+19b, YWL+20, WYKW21, CRR21,
BCG+22, BCCD23, RRT23] use the (dual-)LPN problem with very low noise rate over finite fields to
construct concretely efficient PCG-like protocols, which extend a small number of correlations (e.g., COT,
VOLE and OLE) to a large number of correlations with sublinear communication. These protocols can be
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used as building blocks to design a variety of MPC and ZK protocols. Therefore, the hardness of (dual-)LPN
problems is crucial to guarantee the security of all the protocols.

Before our work, almost all of the known PCG-like protocols based on (dual-)LPN adopt the formulas
by Boyle et al. [BCGI18] to select the concrete parameters for some specified security level. Boyle et
al. [BCGI18] obtained the formulas by analyzing three attacks: Pooled Gauss [EKM17], ISD [Pra62] and
SD [Al 01]. However, we found some imprecisions for their analysis, which are outlined as follows:

• When analyzing the hardness of LPN with exact noise distribution HWt,N (F), the formula against Pooled
Gauss attack is obtained by viewing HWt,N (F) as a Bernoulli distribution Bert/N,N (F), which makes the
formula not accurate.

• When analyzing the hardness of LPN against ISD attacks, the formula is obtained by an upper bound of the
complexity of the Prange’s ISD algorithm [Pra62] to solve LPN problems over a large field. This does not
cover the advanced ISD variants [Ste88, Dum91, MMT11, BJMM12]. Additionally, their analysis does
not capture the impact of field sizes when calculating the ISD cost.

• When analyzing the hardness of LPN against SD attacks, each parity-check vector is assumed to be
independently in compliance with a Bernoulli distribution, which is inaccurate [DT17].

We also give more accurate formulas on the hardness of low-noise (dual-)LPN problems, where the recent SD
improvement called SD 2.0 [CDMT22] is also included. Very recently, Meyer-Hilfiger and Tillich [MT23]
shown that the SD 2.0 algorithm can be modified to obtain the same complexity under a weaker assumption.
For LPN with exact noise distributions, we compare our more accurate costs of Pooled Gauss, SD and ISD
attacks with that by Boyle et al. [BCGI18] in Tables 6 and 7 in Appendix B, where all the LPN parameters
are adopted from [BCGI18]. Under the same LPN parameters, while Boyle et al. [BCGI18] showed that
either Pooled Gauss attack or SD attack has the lowest cost, our analysis shows that ISD attack has the lowest
cost. Tables 6 and 7 also show that the ISD attack has lower cost for smaller field size, which is also observed
in prior works such as [FJR22]. This justifies that it is not accurate to use the same formulas for all field sizes
as in [BCGI18].

Under the Gilbert-Varshamov (GV) bound 8, Carrier et al. [CDMT22] shown that SD 2.0 outperforms
all ISD algorithms for the case that the code rate k/N < 0.3. However, we observe that the SD 2.0
algorithm [CDMT22] does not behave better when solving the low-noise LPN problems used in the PCG-like
protocols. This is because the collision technique 9 (a subroutine of SD 2.0) takes exponential time 2θ(k) that
is much larger than the subexponential time 2O(kµ) to solve the low-noise LPN problem with ISD, where
µ = 1/kc is the noise rate (i.e., t/N ) for constant 0 < c < 1. This is the case after we incorporate into
SD 2.0 other collision techniques that are known to perform better for low-noise LPN (e.g., the one used in
low-weight parity-check attack shown in [BCGI18, Section 2.3], originated from [Zic17]). In Appendix B.2,
we prove that the SD 2.0 attack [CDMT22] (that improves the SD attack) adapted to the low-noise setting
require more cost than the ISD attack against (HW,F)-LPN(N, k, t) with field size |F| ≥ 4t.

The previous analysis [BCGI18] focuses on exact noise distributions, but the recent PCG-like protocols
mainly adopt regular noise distributions to achieve better efficiency. To close the gap, our analysis includes
two aspects to capture the regular structure of noises. On the one hand, we transform a regular-LPN problem
(RHW,F2)-LPN(N, k, t) into an exact-LPN problem (HW,F2)-LPN(N − t, k− t, t) based on the approach
in prior works [EMZ22, BØ23]. Then, we solve the (HW,F2)-LPN(N − t, k − t, t) problem by applying
established attacks, independent of the regular structure. This transformation from regular-LPN to exact-LPN
works for LPN over F2, but fails to work for LPN over larger fields (see more details in Section 5.1). On

8The GV bound decoding over F2 is to solve LPN instances that achieve the GV relative distance t/N = H−1(1− k/N), where
H(µ) = µ · log(1/µ) + (1− µ) · log(1/(1− µ)) is the binary entropy function and H−1 is the inverse of H.

9The collision technique refers to the process of finding parity check vectors.
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Regular LPN This work This work
over a field F (log |F| = 128) (log |F| = 1)

N k t Gauss SD SD 2.0 ISD AGB Gauss SD SD 2.0 ISD AGB

210 652 57 111 184 184 111 111 106 183 108 90 101
212 1589 98 100 151 151 100 107 96 146 130 80 103
214 3482 198 101 149 149 101 110 97 143 136 83 106
216 7391 389 103 147 147 103 111 99 141 138 87 108
218 15336 760 105 146 146 105 107 101 140 138 92 104
220 32771 1419 107 145 145 107 102 104 139 139 97 98
222 67440 2735 108 138 138 108 104 103 133 133 99 103

Table 3: The bit-security of LPN problems over finite fields with number of samples N , dimension k and
Hamming weight of noises t for a regular noise distribution. The abbreviation “AGB” denotes the recent
algebraic attack [BØ23].

Regular dual-LPN This work This work
over a field F (log |F| = 128) (log |F| = 1)

n N t Gauss SD SD 2.0 ISD AGB Gauss SD SD 2.0 ISD AGB

210 212 44 117 189 189 117 127 116 190 167 96 125
212 214 39 111 170 170 111 127 111 170 165 95 127
214 216 34 107 151 151 107 128 107 151 150 93 128
216 218 32 108 145 145 108 132 108 145 145 95 132
218 220 31 112 143 143 112 139 112 143 143 99 139
220 222 30 116 141 141 116 145 116 141 141 103 145
222 224 29 119 139 139 119 152 119 139 139 107 152

Table 4: The bit-security of dual-LPN problems over finite fields with dimension N − n = 3N/4, number
of samples N and Hamming weight of noises t for a regular noise distribution. “AGB” denotes the recent
algebraic attack [BØ23].

the other hand, our analysis includes the recent algebraic attack by Briaud and Øygarden [BØ23], which
exploits the regular structure of noises. This attack is able to obtain lower cost for regular-LPN problems with
small code rate k/N for some parameter sets. Recently, Carozza, Couteau and Joux [CCJ23] also proposed
new attacks tailored to LPN with regular noises, but focus on the parameter selection satisfies the condition
(N/t)t ≤ 2N−k ≤

(
N
t

)
, which notably differs from the parameter selection used in the PCG setting. Thus,

we do not cover their attacks.
For regular noise distributions, we give the costs of different attacks against LPN problems with the

parameters given in [BCGI18], which is shown in Tables 3 and 4. For the case of log |F| = 128 and
(N, k, t) = (220, 32771, 1419) or (N, k, t) = (222, 67440, 2735), the algebraic attack achieves the lowest
cost among these attacks. When the LPN parameters listed in Table 3 achieve the bit security at most 111, we
have two choices to achieve 128-bit security: (a) increasing the dimension k; (b) increasing the noise weight t.
When only increasing weight t, the algebraic attack would have significantly lower cost than other attacks for
some parameter sets (see Table 8 in Appendix B), which has been observed in [BØ23]. To resist the algebraic
attack and the attack strategy based on the above regular-to-exact transformation, a better choice is to increase
dimension k. For example, as shown in Table 5, we need to increase the dimension of LPN problems with a
regular noise distribution by 0.5% ∼ 48.3% to achieve the same 128-bit security as LPN problems with an
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#Samples Weight Dimension for log |F| = 128 Dimension for log |F| = 1

N t Exact-LPN Regular-LPN Exact-LPN Regular-LPN

212 172 1321 1377 (+4.2%) 1549 1657 (+7.0%)
214 338 2895 2909 (+0.5%) 3373 3655 (+8.3%)
216 667 6005 6091 (+1.4%) 6956 7560 (+8.7%)
218 1312 12160 14796 (+21.7%) 13898 15996 (+15.1%)
220 2467 25346 30978 (+22.2%) 28289 33354 (+17.9%)
222 4788 50854 75396 (+48.3%) 55408 80074 (+44.5%)

Table 5: Comparison of dimensions between exact-LPN problems and regular-LPN problems over finite
fields for 128-bit security level.
exact noise distribution. The increase of dimension k has a negligible impact on the efficiency of PCG-like
protocols, due to the usage of the Bootstrapping-iteration technique [YWL+20]. For dual-LPN problems, we
note that the algebraic attack [BØ23] has significantly more cost than Pooled Gauss and ISD attacks for all
the listed parameters, as the code rate is constant (typically 1/2 or 3/4).

In this section, we aim to give more accurate formulas by adjusting the known attacks to analyze
the cost of low-noise LPN problems in the PCG setting. In particular, we provide an estimator tool (see
Footnote 3), which incorporates the advanced attacks being applicable to LPN problems in the PCG setting,
to automatically evaluate the bit security of low-noise LPN problems. This will help future works to select
LPN parameters when designing or applying PCG-like protocols. While the recent estimator tool by Esser
and Bellini [EB22] focuses on ISD attacks to analyze the hardness of classical LPN problems over F2 with
an exact noise distribution in the traditional public-key setting, our estimator tool covers Pooled Gauss, SD,
SD 2.0, ISD and algebraic attacks to evaluate the hardness of low-noise LPN problems over an arbitrary finite
field (or integer ring) with a regular or exact noise distribution in the PCG setting.

In Section 5.1, we first show that (RHW,F2)-LPN(N, k, t) is not harder than (HW,F2)-LPN(N − t, k−
t, t), and also give an overview of the algebraic attack. For LPN over larger fields, we do not find such
an efficient transformation from regular-LPN to exact-LPN. Therefore, we are able to analyze the costs
of Pooled Gauss, SD and ISD attacks against LPN problems in a similar way for both exact and regular
noise distributions. Then, in Appendix B, we show the imprecisions of the previous analysis [BCGI18] and
give more accurate formulas against Pooled Gauss, SD and ISD attacks for the hardness of low-noise LPN
problems.

5.1 The Hardness of LPN with Regular Noise Distributions

Transformation from regular-LPN to exact-LPN over F2. Building upon prior works [EMZ22, BØ23], we
transform a regular-LPN problem (RHW,F2)-LPN(N, k, t) into an exact-LPN problem (HW,F2)-LPN(N−
t, k − t, t). The reduction is useful for the case of 2N−k >

(
N
t

)
which is satisfied by the LPN parameters

in the PCG setting. In this case, both regular-LPN and exact-LPN problems have unique solutions for
these parameters, and thus the solution of (HW,F2)-LPN(N − t, k − t, t) is always that of (RHW,F2)-
LPN(N, k, t).

Let m = ⌊N/t⌋. Given a (RHW,F2)-LPN(N, k, t) instance (A, b) with b = A · s + e ∈ FN
2 and

s ∈ Fk
2 , we define

A
def
=

 A1
...
At

 , e
def
=

 e1
...
et

 and b
def
=

 b1 = A1 · s+ e1
...

bt = At · s+ et

 ,
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where Ai ∈ Fm×k
2 , ei ∈ Fm

2 and bi ∈ Fm
2 for i ∈ [1, t]. Note that the Hamming weight of each sub-vector

ei is exactly 1. We use Ai[j] to denote the j-th row vector of Ai, and recall that bi[j] and ei[j] is the j-th
component of vectors bi and ei respectively. Then, for each i ∈ [1, t], we can obtain the following equation:

m∑
j=1

bi[j] =

m∑
j=1

Ai[j] · s+

m∑
j=1

ei[j] =

 m∑
j=1

Ai[j]

 · s+ 1 .

Therefore, we extract t linear relations about the secret and reduce the dimension of s by t. Specifically,
we replace s[0], . . . , s[t − 1] with a linear function of other components in s, allowing us to eliminate
s[0], . . . , s[t− 1] from s.

We eliminate the correlation by removing one sample within each block, where correlation indicates that
the noise bit of the removed sample is fully determined by the remaining m− 1 samples in the same block.
After removing the t samples, we show that the remaining samples, permuted randomly, still constitute an
LPN instance. For the remaining samples in each block i ∈ [1, t], we denote by wi the Hamming weight of
the noise sub-vector. Then we have that wi follows a Bernoulli distribution, i.e., Pr[wi = 1] = 1 − 1/m
and Pr[wi = 0] = 1/m. By a union bound, we have that the resulting noise vector follows the exact noise
distribution HWt,N−t(F2), with probability at least (1−1/m)t ≥ 1−t/m, which is close to 1 as m = ⌊N/t⌋
is sufficiently large for the LPN parameters used in the PCG setting. Thus, the resulting LPN instance is an
exact-LPN instance (HW,F2)-LPN(N − t, k − t, t). Therefore, we can use the bit security of an exact-LPN
instance (HW,F2)-LPN(N − t, k− t, t), based on all known attacks against exact-LPN, to estimate that of a
regular-LPN instance (RHW,F2)-LPN(N, k, t). We can convert a dual-LPN problem into an LPN problem
using the approach in [MM11]. Thus, we are also able to perform the above transformation for dual-LPN
problems over F2.

For LPN problems over a field F with |F| > 2, the above transformation fails to work. For each noisy
coordinate, a regular-LPN instance now samples a random element in F\{0} rather than only 1. In this case,
for each block i ∈ [1, t], we have that

∑m
j=1 bi[j] = (

∑m
j=1Ai[j]) · s+ r where r ∈ F\{0} is random and

unknown. Now, we have to guess the random element r, which succeeds with probability at most 1
|F|−1 . For

all t blocks, we can succeed in guessing all random elements in t noisy coordinates with probability at most
1

(|F|−1)t ≤
1
2t . Besides, we are able to perform the above transformation for a part of blocks. However, it

does not allow us to decrease the cost of solving a regular-LPN problem by guessing the random elements
located in noisy coordinates and performing the above transformation. In conclusion, we choose to use the
known attacks of Pooled Gauss, SD and ISD against exact-LPN to estimate the cost of regular-LPN against
these attacks for the case of larger fields.

The recent algebraic attack against regular-LPN. Recently, Briaud and Øygarden [BØ23] introduced a
new algebraic attack that is tailored to LPN problems with regular noise distributions. Specifically, their
attack solves a polynomial system involving the coordinates of a regular noise vector e, leveraging the
quadratic system that captures the regular structure. This algebraic attack, as described in [BØ23], converts
solving a dual-LPN problem over a field F into solving a polynomial system of degree 2 involving the
coordinates of an error vector. In particular, the polynomial system consists of n parity-check equations
(represented as H · e = y) along with another quadratic system that encodes the regular structure of a noise
vector e = (e1, . . . , et) where ei is defined as above. In more detail, for each sub-vector ei ∈ Fm with
m = ⌊N/t⌋, all quadratic equations of the form ei[j1] · ei[j2] = 0 for j1 < j2 are involved. For the case of
F2, a variation of the quadratic system is employed by introducing additional structural equations of the form
(ei[j])

2 = ei[j] and
∑m

j=1 ei[j] = 1, which guarantees that every ei is a unit vector. Standard algorithms
such as XL/Gröbner bases [Wie86, Tho02, Cop94, Beu21] are then applied to solve the degree-2 polynomial
system. Furthermore, a hybrid approach is proposed to reduce the computation complexity. This approach
involves guessing some error-free positions of the noise error e, inspired from the regular version of Prange’s
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algorithm [HOSS18]. It is not easy to give a succinct formula to compute the cost of their algebraic attack.
Instead, we choose to provide an estimator tool (see Footnote 3), which allows us to automatically estimate
the cost of the algebraic attack.

Compared to linear attacks such as Pooled Gauss, SD and ISD attacks, their algebraic attack achieves
lower cost when solving regular-LPN problems with small code rate for some parameter sets (see Tables 3
and 8). The algebraic attack does not outperform ISD attacks for dual-LPN problems used in PCG-like
protocols that have constant code rate (i.e., 1/2 or 3/4). Given the number of samples (corresponding
to the number of PCG correlations), we are able to increase the dimension k and keep the noise weight
t unchanged to resist the algebraic attack [BØ23] against LPN problems, while keeping the efficiency
essentially unchanged due to the usage of bootstrapping iterations [YWL+20].
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A The Hardness of LPN over More General Rings

We generalize the reductions between LPN over Zpλ1qλ2 and LPN over Fp/Fq for distinct primes p, q. Our
techniques can also be generalized to an arbitrary integer ring with more than two prime factors. We recall
that every number a ∈ [pλ1qλ2 ] can be uniquely represented using the multi-base (1, p, . . ., pλ1 , pλ1q, . . .,
pλ1qλ2−1) for distinct primes p, q. We define function DigitDecomp that decomposes a number/vector/matrix
a ∈ [pλ1qλ2 ]

dim (where dim = 1, n, n1 × n2 for number, vector, or matrix respectively by applying the
operation component-wise) into the above multi-base representation, i.e.,

DigitDecomp(a) = (a0,a1, · · · ,aλ1+λ2−1)

such that ai ∈ [p]dim and aj ∈ [q]dim for every i ∈ [λ1] and j ∈ [λ1, λ1 + λ2], and a =
∑λ1−1

i=0 piai +∑λ1+λ2−1
j=λ1

pλ1qj−λ1aj , and its inverse DigitDecomp−1 such that a = DigitDecomp−1(a0,a1, · · · ,aλ1+λ2−1).
We show how to reduce the hardness of both decisional LPN over Fp and decisional LPN over Fq to that

of decisional LPN over Zpλ1qλ2 with the noise distributions, IndBerµ,N (Zpλ1qλ2 ) and IndHWt,N (Zpλ1qλ2 ),
extending the noise distributions IndBerµ,N and IndHWt,N from over Z2λ to Zpλ1qλ2 .

• e ← IndBerµ,N (Zpλ1qλ2 ) refers to e := DigitDecomp−1(e0, e1, · · · , eλ1+λ2−1) with ei ← Berµ,N (Fp)

and ej ← Berµ,N (Fq) for i ∈ [λ1] and j ∈ [λ1, λ1 + λ2].

• e ← IndHWt,N (Zpλ1qλ2 ) means e := DigitDecomp−1(e0, e1, · · · , eλ1+λ2−1) with ei ← HWt,N (Fp)

and ej ← HWt,N (Fq) for i ∈ [λ1] and j ∈ [λ1, λ1 + λ2].

Theorem 10 (Equivalence of Decisional LPN over Zpλ1qλ2 and Fp/Fq).
1. Both decisional (D1,Fp)-LPN(N, k,w) and decisional (D1,Fq)-LPN(N, k,w) are hard if and only if de-

cisional (D2,Zpλ1qλ2 )-LPN(N, k,w) is hard, where (D1,D2, w) ∈ {(Ber, IndBer, µ), (HW, IndHW, t)}.

2. If the decisional (Ber,Zpλ1qλ2 )-LPN(N, k, µ) problem is hard, then both decisional (Ber,Fp)-LPN(N, k, µ)
and decisional (Ber,Fq)-LPN(N, k, µ) are hard.

3. If the decisional (HW,Zpλ1qλ2 )-LPN(N, k, t) problem is hard, then both decisional (HW,Fp)-LPN(N, k, (p−1)p
λ1−1qλ2

pλ1qλ2−1 ·

t) and decisional (HW,Fq)-LPN(N, k, (q−1)pλ1qλ2−1

pλ1qλ2−1 · t) are hard.

Proof. The proof of the first statement is essentially similar to that of Theorem 4 and Theorem 5. Let
(A, b = A · s + e mod pλ1qλ2) be the LPN over Zpλ1qλ2 . Decompose the matrices and vectors into the
corresponding size-(λ1+λ2) lists, (s0, s1, · · · , sλ1+λ2−1) := DigitDecomp(s), (e0, e1, · · · , eλ1+λ2−1) :=
DigitDecomp(e) and (b0, b1, · · · , bλ1+λ2−1) := DigitDecomp(b). Therefore, for i ∈ [λ1] and j ∈ [λ1, λ1+
λ2], we can write

bi = A′ · si + ei + fi(A, s0, · · · , si−1, e0, · · · , ei−1) mod p ,

bj = A′′ · sj + ej + fj(A, s0, · · · , sj−1, e0, · · · , ej−1) mod q ,

where A′ = A mod p, A′′ = A mod q and fi (resp., fj) is the sum of all other terms involving the
individual components of s and e with index up to i − 1 (resp., j − 1). Define the hybrid distributions
H0, · · · , Hλ1+λ2 as

H0 = (A,u0, · · · ,uk−1,uk · · · ,uλ1+λ2−1)

...

Hk = (A, b0, · · · , bk−1,uk · · · ,uλ1+λ2−1)

...

Hλ1+λ2 = (A, b0, · · · , bk−1, bk · · · , bλ1+λ2−1)
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Algorithm 2: ALPN
pλ1qλ2

, the secret recovery algorithm on LPN over Zpλ1qλ2 (λ1 + λ2 ≥ 2) with
oracle access to ALPNr (the solver for LPN over Fr) and r ∈ {p, q}.

Input: (D,Zpλ1qλ2 )-LPN(k,N, t) samples (A, b = A · s+ e mod pλ1qλ2)
Output: s ∈ Zpλ1qλ2

1 (A0,A1, · · · ,Aλ1+λ2−1) := DigitDecomp(A);
2 (b0, b1, · · · , bλ1+λ2−1) := DigitDecomp(b);
3 if λ1 >= 1 then
4 (s0, e0)← ALPNp(A

0, b0);
5 b′ := (b−A · s0 − e0)/p;

6 Return s = s0 + p · ALPN
pλ1−1qλ2

(
A′ := A mod pλ1−1qλ2 , b′

)
;

7 (s0, e0)← ALPNq(A
0, b0);

8 b′ := (b−A · s0 − e0)/q;

9 Return s = s0 + q · ALPN
qλ2−1

(
A′ := A mod qλ2−1, b′

)
;

where every ui ← FN
p and uj ← FN

q is sampled independently for i ∈ [λ1] and j ∈ [λ1, λ1+λ2]. Note that all
the sk’s are independent, and by the definition of e← IndBerµ,N (Zpλ1qλ2 ) (resp., e← IndHWt,N (Zpλ1qλ2 ))
we have that ei follows Berµ,N (Fp) (resp., HWt,N (Fp)) and ej follows Berµ,N (Fq) (resp., HWt,N (Fq))
given its (independent) prefix e0, · · · , ei−1 and prefix e0, · · · , ej−1 for i ∈ [λ1] and j ∈ [λ1, λ1 + λ2].
Therefore, all the adjacent Hi−1 and Hi are computationally indistinguishable and so are H0 and Hλ by a
hybrid argument.

The proof of the second statement is essentially similar to that of Theorem 3 and can also be demonstrated
using the Chinese Remainder Theorem. Given the LPN over ring Zpλ1qλ2 samples (A, b = A · s + e

mod pλ1qλ2), we also observe that the samples (A0 := A mod r, b0 := b mod r) constitute exactly the
LPN over Fr samples for noise e0 = e mod r, where r ∈ {p, q}. In case that e ← HWt,N (Zpλ1qλ2 ),

the noise vector e mod p has expected weight tp = (p−1)pλ1−1qλ2

pλ1qλ2−1 · t and the noise vector e mod q

has expected weight tq = (q−1)pλ1qλ2−1

pλ1qλ2−1 · t. This implies that with probability Ω(1/
√
t) the noise vector

e mod p follows the exact-weight distribution HWtp,N (Fp) and the noise vector e mod q follows the
exact-weight distribution HWtq ,N (Fq). The proof for the second statement is likewise, except when taking
e← Berµ,N (Zpλ1qλ2 ) we get e mod r ∼ Berµ,N (Fr), where r ∈ {p, q}.

Similar to the proof of Theorem 8, we give a reduction from the computational LPN problem over
a ring Zpλ1qλ2 to that over Fp and Fq (see Theorem 11), extending the corresponding reduction between
the computational LPN problem over Z2λ to that over F2. Algorithm 2 shows how the computational
LPN problem over Zpλ1qλ2 is reduced to that over Fp or Fq by recursion, whose correctness is analyzed in
Lemma 5.

Lemma 5. Let (A, b = A · s+ e mod pλ1qλ2) be the LPN samples over Zpλ1qλ2 , then (A′, b′) as defined
in step 6 (resp., step 9) of Algorithm 2 constitute the LPN samples over Zpλ1−1qλ2 (resp., Zqλ2−1).

Proof. Let (s0, s1, · · · , sλ1+λ2−1) := DigitDecomp(s) and (e0, e1, · · · , eλ1+λ2−1) := DigitDecomp(e).
The proof of the statement about (A′, b′) as defined in step 6 and step 9 are similar to that of Lemma 4.
For the statement about (A′, b′) as defined in step 6, it suffices to prove b′ = A′ · s′ + e′ mod pλ1−1qλ2 ,
where s′ = (s − s0)/p and e′ = (e − e0)/p are the secret and noise of the LPN problem over Zpλ1−1qλ2

33



respectively. That is,

p · b′ − p · (A′ · s′ + e′) = b−A · s0 − e0 − p · (A′ · s′ + e′)

= b−A · s0 − e0 −A · (s− s0)− e+ e0

= b−A · s− e = 0 mod pλ1qλ2 ,

where the first equality follows from b′ = (b−A · s0 − e0)/p, the second is due to p ·A′ · s′ = p ·A · s′
mod pλ1qλ2 and p · e′ = e− e0, and the last is by the LPN assumption over Zpλ1−1qλ2 . For the statement
about (A′, b′) as defined in step 9, it suffices to prove b′ = A′ · s′ + e′ mod qλ2−1, where s′ = (s− s0)/q
and e′ = (e− e0)/q are the secret and noise of the LPN problem over Zqλ2−1 respectively. That is,

q · b′ − q · (A′ · s′ + e′) = b−A · s0 − e0 − q · (A′ · s′ + e′)

= b−A · s0 − e0 −A · (s− s0)− e+ e0

= b−A · s− e = 0 mod qλ2 ,

where the first equality follows from b′ = (b−A · s0 − e0)/q, the second is due to q ·A′ · s′ = q ·A · s′
mod qλ2 and q · e′ = e− e0, and the last is by the LPN assumption over Zqλ2−1 .

Theorem 11. If computational (Ber,Fp)-LPN(N, k, µ) and (Ber,Fq)-LPN(N, k, µ) problems can be broken
with probability at least (1− ϵ) in time T respectively, then the computational (Ber,Zpλ1qλ2 )-LPN(N, k, µ)
problem can be broken in time (λ1+λ2)T +poly(k,N) with success probability at least 1−(λ1+λ2+2)

√
ϵ.

Proof. Algorithm 2 translates an (Ber,Zpλ1qλ2 )-LPN(N, k, µ) instance into λ1 (Ber,Fp)-LPN(N, k, µ) in-
stances and λ2 (Ber,Fq)-LPN(N, k, µ) instances, which are independent except that all (Ber,Fp)-LPN(N, k, µ)
instances share the same random matrix A mod p, all (Ber,Fq)-LPN(N, k, µ) instances share the same
random matrix A mod q and that the noise vectors of the λ1 + λ2 instances are somehow correlated.

For contradiction assume that there exists an algorithm ALPNp (resp., an algorithm ALPNq ) that recovers
the secret of LPN over Fp (resp., the secret of LPN over Fq) with probability more than 2ϵ within time T .
Similar to the proof of Theorem 6, we consider distribution Berµ,N (Fr), for r ∈ {p, q}, being sampled in
two steps: first pick each coordinate with probability µ independently (and let the rest with 0’s), and second
assign the picked coordinates with uniform random field element.

We have by a Markov inequality that for at least a (1 −
√
ϵ) fraction of (A mod p, coin(ei)), ALPNp

recovers si (for i ∈ [λ1]) from (A mod p, (A mod p) · si + ei) with probability at least 1−
√
ϵ. Thus,

the secret of all (Ber,Fp)-LPN(N, k, µ) instances can be recovered with the following probability by a union
bound

(1−
√
ϵ)(1− λ1

√
ϵ) ≥ 1− (λ1 + 1)

√
ϵ .

The proof about the (Ber,Fq)-LPN(N, k, µ) instances is likewise, and we have that the secrets of all
(Ber,Fq)-LPN(N, k, µ) instances can be recovered with the following probability by a union bound

(1−
√
ϵ)(1− λ2

√
ϵ) ≥ 1− (λ2 + 1)

√
ϵ .

Overall, ALPN
pλ1qλ2

succeeds with probability at least 1− (λ1 + λ2 + 2)
√
ϵ by a union bound.

B Concrete Analysis for Low-Noise Exact-LPN Problems

In Tables 6 and 7, we compare our analysis with the previous work by Boyle et al. [BCGI18] for the costs
of Pooled Gauss, SD and ISD attacks to solve exact-LPN problems. From these tables, we can see that the
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Exact LPN This work This work [BCGI18]
over a field F (log |F| = 128) (log |F| = 1) (Any field size)

N k t Gauss SD SD 2.0 ISD Gauss SD SD 2.0 ISD Gauss SD ISD

210 652 57 111 184 184 111 111 194 116 94 80 93 115
212 1589 98 100 151 151 100 100 154 137 83 85 80 104
214 3482 198 101 149 149 101 101 150 144 86 94 80 108
216 7391 389 103 147 147 103 103 148 146 91 99 80 112
218 15336 760 105 146 146 105 105 146 146 95 103 80 117
220 32771 1419 107 145 145 107 107 145 145 99 106 80 121
222 67440 2735 108 144 144 108 108 144 144 104 108 80 126

Table 6: The comparison between our analysis and [BCGI18] for the costs of different attacks to solve an
LPN problem with dimension k, number of samples N , Hamming weight of noises t for an exact noise
distribution.

LPN parameters given in [BCGI18] actually guarantee higher security, based on our more accurate analysis.
Besides, in Table 8, we show the costs of different attacks against regular-LPN problems that have the same
parameters as [BCGI18], except that larger noise weights are used. This table provides us with a hint, i.e.,
increasing the weight t may let the algebraic attack have better attack advantage, and it is not a good choice
to strengthen the security of regular-LPN problems via increasing the weight t. As described in Section 5.1,
it is better to increase the dimension k and keep t unchanged, so as to strengthen the regular-LPN instances
to the 128-bit security.

For analyzing the cost of low-noise LPN problems with exact noise distributions, we focus on Pooled
Gauss, SD and ISD attacks. Our analysis does not cover the BKW attack [BKW00] and its subsequent
improvements (e.g., [Lyu05, EHK+18, DEM19, LY22]) as well as the combinations of Pooled Gauss, ISD
and BKW attacks [EKM17], since all these attacks either require a sub-exponential number of samples that
is not satisfied in the LPN-based protocols under the PCG framework, or take significantly more time than
the Pooled Gauss, SD and ISD attacks for solving LPN with low noise rate. For LPN over F2, the recent
work [DADvW22] takes a different approach by adapting LLL [LLL82] to binary codes using Griesmer’s
bound, as opposed to the standard LLL algorithm which relies on Hermite’s bound. This adaptation provides
a modest polynomial speed-up when compared to Lee and Brickell’s ISD algorithm. However, this adaptation
is still less efficient than advanced ISD algorithms such as MMT-ISD and BJMM-ISD. For LPN over larger
fields, it is still an open problem that adapting LLL to outperform known attacks like ISD and algebraic
attacks. In the following subsections, for low-noise (dual)-LPN problems with exact noise distributions, we
will show the imprecisions of the previous analysis [BCGI18] and provide the MPC and ZK communities
with more accurate formulas and an estimator tool.

B.1 The Hardness of LPN against Pooled Gauss Attack

Pooled Gauss. Gauss attack is a natural extension of Gaussian elimination to recover the secret vector from
an LPN instance with a Bernoulli distribution. This attack guesses a fresh batch of k non-noisy LPN samples
by picking them at random in each iteration, inverts the corresponding submatrix, computes a candidate secret
s′, and then verifies whether s′ is correct or not. However, when considering the concrete LPN parameters,
the number of samples required by this attack is not achieved. To reduce the number of samples, Esser,
Kübler and May [EKM17] introduced Pooled Gauss attack, which guesses k non-noisy samples by picking
them at random from a pool of the fixed N = k2 log2 k LPN samples in each iteration, and then inverts the
corresponding subsystem to get a candidate vector s′ and verifies if s′ is correct. For LPN with noise rate r,
this attack recovers the secret in time k3 log2 k

(1−r)k using k2 log2 k samples. As pointed out in [EKM17], Pooled
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Exact dual-LPN This work This work [BCGI18]
over a field F (log |F| = 128) (log |F| = 1) (Any field size)

n N t Gauss SD SD 2.0 ISD Gauss SD SD 2.0 ISD Gauss SD ISD

210 212 44 117 189 189 117 117 191 170 97 80 100 117
212 214 39 111 170 169 111 111 170 166 95 80 92 112
214 216 34 107 151 151 107 107 151 151 93 80 84 107
216 218 32 108 145 145 108 108 145 145 95 84 82 109
218 220 31 112 143 143 112 112 143 143 99 88 82 112
220 222 30 116 141 141 116 116 141 141 103 93 82 116
222 224 29 119 139 139 119 119 139 139 107 97 82 120

Table 7: The comparison of our analysis and [BCGI18] about the costs of different attacks to solve a dual-LPN
problem with dimension N − n = 3N/4, number of samples N , Hamming weight of noises t for an exact
noise distribution.

Regular LPN with This work This work
larger noise weight (log |F| = 128) (log |F| = 1)

N k t Gauss SD SD 2.0 ISD AGB Gauss SD SD 2.0 ISD AGB

210 652 106 194 351 350 194 179 176 350 194 159 145
212 1589 172 155 261 261 155 150 143 245 216 121 135
214 3482 338 150 247 247 150 150 140 229 218 122 138
216 7391 667 151 244 244 151 150 141 225 220 125 139
218 15336 1312 153 242 242 153 133 143 224 221 129 122
220 32771 2467 155 241 241 155 131 146 224 223 135 125
222 67440 4788 152 231 231 156 110 144 215 214 135 103

Table 8: The bit-security of LPN problems over finite fields with number of samples N , dimension k
and larger weight t for regular noise distributions. The abbreviation “AGB” denotes the recent algebraic
attack [BØ23].

Gauss attack solves the LPN problem via finding a non-noisy index set, which is also called an information
set. Therefore, we can view Pooled Gauss as a special case of the information set decoding (ISD) algorithm,
particularly Pooled Gauss resembles the well-known algorithm of Prange [Pra62].

Previous analysis. For solving the problems of LPN and dual-LPN with exact noise distributions, Boyle
et al. [BCGI18] gave a formula to compute the cost of Pooled Gauss attack by simplifying the under-
lying noise distribution HWt,N (F) to Bert/N,N (F). Below, we discuss why the concrete security under
Bert/N,N (F)-noise is significantly lower than that under HWt,N (F)-noise. Furthermore, we give a more
accurate formula to estimate the cost under Pooled Gauss attack, and discuss the difference between the
previous analysis [BCGI18] and our analysis.

One may consider that the concrete security of HWt,N (F)-LPN is roughly the same as Bert/N,N (F)-LPN,
since a noise e ← Bert/N,N (F) follows the exact noise distribution HWt,N (F) conditioned on |e| = t,
which occurs with noticeable probability (see Lemma 1) if |F| > N . However, this reduction gives only an
upper bound on the security of Bert/N,N (F)-LPN, which is not tight for concrete costs. To see this, take the
dual-LPN parameter (n = 210, N = 212, t = 44) from [BCGI18] as an example. We denote by T (Ber, µ, p)
and T (HW, t, p) the bit-security of dual-LPN with Bernoulli noise of rate µ and exact noise of weight-
t respectively, with successful probability ≥ p. The above reduction translates to T (Ber, t/N, 0.06) ≤
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T (HW, t = 44, 0.99), where Pr[|e| = 44] ≈ 6% for e ← Berµ,N and µ = t/N = 11/1024. For
a tighter bound on T (Ber, t/N, p), we consider collectively the weights up to a smaller threshold, e.g,
Pr[|e| ≤ 35] ≈ 10%, Pr[|e| ≤ 33] ≈ 5%, and thus

T (Ber, t/N, 0.1) ≤ T (HW, 35, 0.99) and T (Ber, t/N, 0.05) ≤ T (HW, 33, 0.99).

Therefore, when evaluating the bit-security for dual-LPN with exact noise weight t = 44 (i.e., T (HW, 44, 0.99)),
[BCGI18] simply used e← Bert/N,N instead of e← HWt,N , and hence what they obtained is more close to
T (HW, 35, 0.99) or even T (HW, 33, 0.99). According to our estimator, the bit security w.r.t. T (HW, w, 0.99)
for w = 44, w = 35 and w = 33 is 117, 98 and 94 respectively. This explains the concrete security gap
between using Bernoulli and exact noise distributions.

Our analysis. To give a precise formula, we extend Pooled Gauss attack [EKM17] from solving a (dual-)LPN
problem from a Bernoulli distribution to solving that with an exact noise distribution. Specifically, the Pooled
Gauss attack performs as follows:

• Given a (HW,F)-LPN(N, k, t) instance b = A ·s+e, for each iteration, guess k non-noisy coordinates of
vector b by sampling them at random, and obtain a length-k vector b′ and k × k matrix A′. Then, compute
s′ := (A′)−1 · b′ and verify whether s′ is correct or not by running the test algorithm in [EKM17].

• Given a (HW,F)-dual-LPN(N,n, t) instance b = H ·e, for each iteration, guess n coordinates of vector e
by sampling them uniformly at random such that these coordinates contain t noisy coordinates of e, choose
the corresponding n× n sub-matrix H′ from H according to the n coordinates, compute e′ := (H′)−1 · b,
and then checks if |e′| = t.

The above attack uses the fixed N samples for both LPN and dual-LPN. For solving LPN, Pooled Gauss

attack runs in time (Nt )
(N−k

t )
· k2.8, where (N−k

t )
(Nt )

is the probability of guessing successfully in one iteration, and

k2.8 is the cost of inverting matrix A′ via Strassen’s algorithm. For solving dual-LPN, Pooled Gauss attack

runs in time (Nt )
(N−k

t )
· (N − k)2.8, where k = N − n is the dimension and (N − k)2.8 is the cost of inverting

matrix H′ via Strassen’s algorithm. As LPN can be efficiently transformed into dual-LPN and vice versa,
Pooled Gauss attack solves a (dual-)LPN problem with number of samples N , dimension k and weight of

noises t in time (Nt )
(N−k

t )
·min(k2.8, (N − k)2.8). Therefore, the bit-security of a (dual)-LPN instance with

respect to Pooled Gauss attack is computed as

log
(
min(k2.8, (N − k)2.8)

)
+ log

(
N

t

)
− log

(
N − k

t

)
.

For the LPN problem with an exact noise distribution, [BCGI18] simplified the cost of Pooled Gauss attack
as ( 1

1−t/N )k · k2.8. In the following, we compare the attack cost in [BCGI18] and our estimate by computing
their ratio:

Tours

T[BCGI18]
≈
(
1− t

N

)k

·
(
N
t

)(
N−k
t

) ≥ (1− t

N

)k

·
(

N

N − k

)t

≈ etk·(
1

N−k
− 1

N ) = e
t·k2

N·(N−k) ,

where ≈ denotes an approximate relation that omits a polynomial factor. For the (dual-)LPN parameters
N, k used in known PCG-like protocols (e.g., k = 0.75N considered in [BCGI18]), the cost of Pooled Gauss
attack estimated by Boyle et al. [BCGI18] is about 2O(t) times larger than our estimate.
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B.2 The Hardness of LPN against SD Attack

Statistical decoding (SD). While Gauss and ISD attacks recover the secret vector s, the SD attack [Al 01,
Ove06, FKI07, DT17] (a.k.a., low-weight parity-check attack in [BCGI18, BCG+19a, BCG+19b]) distin-
guishes LPN samples (A, b = A · s+ e) over F from random samples (A,u). The core of this attack is to
find a set of parity-check vectors

V ⊂ {v |v ·A = 0 and |v| = w with a sufficiently small w > 0} .

While Pr[⟨v,u⟩ = 0] = 1/|F| for random samples, Pr[⟨v, b⟩ = ⟨v, e⟩ = 0] = 1/|F|+ ϵ with some ϵ > 0
for LPN samples, since both Hamming weights of vectors e and v are small. For each v ∈ V , this attack can
compute a vote ⟨v,y⟩ with either y = b or y = u. By repeating the process |V| = 1/ϵ2 times, this attack
outputs a majority of votes indicating whether y = b or y = u.

Recently, by introducing fast Fourier transform (FFT), Carrier, Debris-Alazard, Meyer-Hilfiger and
Tillich [CDMT22] proposed the SD 2.0 algorithm, which improves the SD algorithm considerably and even
outperforms the ISD algorithm for the case that the noise rate achieves the GV bound (defined in Footnote 8)
and code rate k/N < 0.3. The SD 2.0 algorithm [CDMT22] invokes the following two techniques to reduce
the time complexity.

1. Use FFT to perform the majority voting, achieving smaller ϵ.

2. Use the collision technique used in the ISD algorithms [Ste88, Dum91, MMT11, BJMM12] to find a set
V with smaller w.

The computation complexity of the second step is |F|θ(k), which has no advantage in analyzing low-noise
LPN problems used in the PCG setting (see Tables 6 and 7 for examples). Below, we will prove that the SD
2.0 attack (adapted to the low-noise setting) requires more cost than the Prange’s ISD algorithm [Pra62] for
analyzing low-noise LPN over large fields.
Previous analysis. Boyle et al. [BCGI18] analyzed the cost of solving LPN problems against SD attack, and
shown that this attack performs the best among three kinds of attacks for their parameters selection. In the
following, we show two imprecisons for their analysis [BCGI18]. First, Boyle et al. [BCGI18] assumes that
each parity-check vector v ∈ V independently follows a Bernoulli distribution Berw/N,N (F) where w ∈ N
is the Hamming weight of v, which is inaccurate 10 [DT17]. To obtain more accurate complexity of this
attack, a weaker assumption was proposed by [DT17] where each parity-check vector v ∈ V is assumed to
be independently in compliance with an exact noise distribution HWw,N (F). Second, Boyle et al. [BCGI18]
underestimated the cost of this attack as T = T1/ϵ, where T1 is the time of finding one parity check vector
v ∈ V and ϵ is the distinguishing advantage for one vote. The SD attack solves the decisional LPN problem
with negligible advantage in time T , while other attacks solve the LPN problem with constant advantage.
Following the previous works [Al 01, Ove06, FKI07, DT17], this attack takes time T = T1/ϵ

2 to distinguish
LPN samples from random samples with constant advantage. 11

Our analysis. We can view the traditional SD attack as a special case of the SD 2.0 attack. Thus, we focus on
analyzing the cost of SD 2.0 and giving its formula for low-noise LPN. We adapt SD 2.0 to analyze low-noise
LPN by using the collision technique [Zic17, BCGI18], and also generalize it from F2 to any finite field F.

10The Bernoulli distribution admits a slackness event that the weight of a parity-check vector v goes much below the ex-
pected w leading to underestimate the attack cost. However, for an optimal weight w, such low-weight vectors v’s violating the
Gilbert–Varshamov bound may not exist at all.

11We shall distinguish the differences between 1/ϵ and 1/ϵ2. If a single key-recovery attack succeeds with probability ϵ, then
repeating roughly 1/ϵ independent instances achieves constant (or even overwhelming) success probability. In contrast, if a single
distinguishing attack gains advantage ϵ, then the number of independent votes needed to amplify the advantage to constant is about
1/ϵ2 by a Chernoff bound.
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Given either a (HW,F)-LPN(N, k, t) instance b = A · s+ e or a random instance u $←− FN , the adapted SD
2.0 algorithm introduces a new parameter s, and proceeds in the following two stages.

1. Using the collision technique [Zic17, BCGI18], we aim to identify a set of parity-check vectors

V ⊂
{
v

def
= (v1,v2)

∣∣v1 ∈ Fs, v ·A = 0 and |v2| = w
}
,

where w > 0 is sufficiently small. It’s essential to note that for each v, we can express ⟨v, b⟩ as

⟨v,A · s+ e⟩ = ⟨v, e⟩ = ⟨v1, e1⟩+ ⟨v2, e2⟩, where e def
= (e1, e2), e1 ∈ Fs and e2 ∈ FN−s. The SD 2.0

algorithm [CDMT22] makes the assumption that ⟨v2, e2⟩ independently follows a Bernoulli distribution
Berϵ,1(F) with some ϵ > 0 for each v ∈ V . Very recently, Meyer-Hilfiger and Tillich [MT23] shown that
the strong independence assumption can be replaced with a very mild assumption, and modified the SD
2.0 algorithm to obtain the same complexity under the mild assumption. In this paper, we focus on the
cost of SD 2.0 instead of the underlying assumption, and thus follow the original SD 2.0 algorithm to give
a simpler description.

2. Use FFT, if an LPN instance is given, then the ratio on the number of zero entries in the following set{
⟨v, b⟩ − ⟨v1, e1⟩

∣∣ (v1,v2) ∈ V and v1 ∈ Fs
}

is greater than ϵ/2 + 1/|F|. Otherwise, the ratio for the following set{
⟨v,u⟩ − ⟨v1, e1⟩

∣∣ (v1,v2) ∈ V and v1 ∈ Fs
}

is at most ϵ/2 + 1/|F|. Note that v and u are independent.

An appropriate value for parameter s is chosen so that the two stages take almost the same cost. In the
following, we analyze the SD 2.0 cost of solving low-noise LPN by considering two cases: binary field F2

and larger fields.

Binary field F2. Given a (HW,F)-LPN(N, k, t) instance, the adapted SD 2.0 algorithm finds a parity-check
vector set with Hamming weight w = w(s). According to [Lyu05, Lemma 3], we have that

ϵs = Pr[⟨v2, e2⟩ = 0]− 1/|F| = 1

2

(N − 2w − t+ 1

N − t+ 1

)t
,

and the time complexity is T = min
s

(
T1 · (1/ϵs)2 + s · 2s

)
, where w = (k + 1 − s)/2 and T1 = k + 1

following the work [BCGI18].

Larger fields. For fields of size |F| ≥ 4t, we adapt the SD 2.0 algorithm [CDMT22] to analyze the cost of
solving the (HW,F)-LPN(N, k, t) problem. In particular, we have the following theorem.

Theorem 12. For w = w(s) ∈ N and a finite field F with |F| ≥ 4t, the adapted SD 2.0 algorithm solves the
decisional (HW,F)-LPN(N, k, t) problem in time

T = min
s

T1 ·

( (
N
t

)(
N−w

t

) · 2|F|
|F| − 1

)2

+ s · |F|s · log |F|

 ,

with constant advantage, where T1 is the time of finding one parity-check vector.

Proof. We first analyze the time complexity with a slightly different noise distribution HW′t,N (F) (to be
defined below). Then, we show when switching from HW′t,N (F) back to HWt,N (F), the distinguishing
advantage only diminishes slightly, but it remains constant, all while maintaining the same time complexity.
Specifically, we define HW′t,N (F) as follows:
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1. Sample t out of N positions uniformly at random, and set the rest N − t positions as 0.

2. For each noisy coordinate picked in the previous step, sample a random element in F.

Let b = A · s+ e′ with e′ ← HW′t,N (F). Let v′ be a parity-check vector in the set V , which can be found
in time T1 using the techniques [Zic17, BCGI18]. We denote by E the event that there is no intersection
between the set of non-zero coordinates in vector v′ and that of the noisy coordinates of e′. Then, we have
the following:

Pr[⟨v′, b⟩ = 0] = Pr[⟨v′, e′⟩ = 0]

=Pr[⟨v′, e′⟩ = 0 |E] · Pr[E] + Pr[⟨v′, e′⟩ = 0 | ¬E] · Pr[¬E]

=Pr[E] +
1

|F|
· Pr[¬E] =

(
N−w

t

)(
N
t

) +
1

|F|
·

(
1−

(
N−w

t

)(
N
t

) ).
The SD 2.0 algorithm performs maximum likelihood decoding for 1/ϵ2 votes, which takes time O(s|F|s log |F|)
using FFT. Together with ϵ = (Pr[⟨v′, b⟩ = 0]− 1/|F|)/2 =

(N−w
t )

(Nt )
· |F|−12|F| , the adapted SD 2.0 algorithm

solves the decisional (HW′,F)-LPN(N, k, t) problem with advantage ≥ 1
2 in time

T = min
s

T1 ·

( (
N
t

)(
N−w

t

) · 2|F|
|F| − 1

)2

+ s · |F|s · log |F|

 .

The statistical distance between HWt,N (F) and HW′t,N (F) is bounded by

SD(HWt,N ,HW′t,N ) ≤ SD(U(F\{0})t ,UFt) = 1− (1− 1

|F|
)t ≤ t

|F|
≤ 1

4
,

where UR denotes the uniform distribution over R. Overall, the adapted SD 2.0 algorithm solves the
decisional (HW,F)-LPN(N, k, t) problem with advantage at least 1/4.

We set w = k − s+ 1 and T1 = k + 1 following the work [BCGI18]. For the case of 2 ≤ |F| < 4t, we
can still use the above formula to estimate the cost of the adapted SD 2.0 algorithm, which is smaller than the
actual cost and makes our analysis more conservative.

Debris-Alazard and Tillich [DT17] shown that an optimal SD algorithm requires more cost than the
Prange’s ISD algorithm [Pra62] for solving LPN over F2 with noise rate achieving the GV bound. Below, we
show that for solving low-noise LPN problems over large fields, the SD 2.0 algorithm always takes more cost
than the Prange’s ISD algorithm [Pra62]. Note that the traditional SD attack always has more cost than the
(adapted) SD 2.0 attack. In the following theorem, we assume that LPN problems adopt random linear codes
as in [DT17].

Theorem 13. For any (HW,F)-LPN(N, k, t) problem with |F| = kω(1), (1 + β)k ≤ N = poly(k) for a
constant β > 0 and t = o(N), the adapted SD 2.0 attack requires more cost than the Prange’s ISD algorithm.

Proof. For the case of s = Ω(k), it trivially holds, since the SD 2.0 algorithm takes at least |F|s, which is
much greater than the time complexity 2o(k) of the Prange’s ISD algorithm. Hence, we only need to consider
s = o(k). The SD 2.0 algorithm needs to find a set of parity-check vectors

V ⊂
{
v

def
= (v1,v2)

∣∣v1 ∈ Fs, v ·A = 0 and |v2| = w
}

,
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with a sufficiently small w > 0. The expected number of such parity-check vectors is E[|V|] ≤
(
N−s
w

)
·

|F|w−k+s. We need E[|V|] ≥ 1 to guarantee existence. In particular, we have the following:

2w·logN+(w−k+s)·log |F| = Nw · |F|w−k+s ≥
(
N − s

w

)
· |F|w−k+s ≥ 1.

Together with |F| = kω(1) and N = poly(k), we have that w ≥ (1 − o(1))k. Since the cost of SD 2.0
increases as w increases, we set w = (1 − o(1))k for an optimal attack in the SD 2.0 framework and we
conservatively assume that the time of finding a parity-check vector with minimal weight w is at least the
time using the Gaussian elimination method (denoted by TGauss). 12 According to Theorem 12, we have that
the adapted SD 2.0 algorithm solves the LPN problem with constant algorithm in time

T = min
s

TGauss ·

( (
N
t

)(
N−w

t

) · 2|F|
|F| − 1

)2

+ s · |F|s · log |F|

 .

The cost of the Prange’s ISD algorithm is upper bounded by TGauss ·
(Nt )
(N−k

t )
(see, e.g., [BCGI18, HOSS18]).

The cost-ratio between the optimal attack in the SD 2.0 framework and the Prange’s ISD attack is greater than(
(Nt )

(N−w
t )

)2
(Nt )
(N−k

t )

=

(
N
t

)
·
(
N−k
t

)(
N−w

t

)2 =
t∏

i=1

(N − t+ i) · (N − k − t+ i)

(N − w − t+ i)2
. (2)

For N ≥ (1 + β)k, t = o(N) and w = (1− o(1))k, we have that w(2N − 2t− w) ≥ k(N − t). It follows
that the above value in (2) is greater than 1.

B.3 The Hardness of LPN against ISD Attack

Information set decoding (ISD). Solving LPN is equivalent to solving its dual variant, which is able to be
interpreted as the task of decoding a linear code from its syndrome. To address this challenge, Prange’s ISD
algorithm [Pra62] seeks to identify a subset of size t from the rows of the parity-check matrix H that spans H ·
e, where recall that t is the Hamming weight of noise vector e. For solving dual-LPN over binary field F2, the
Prange’s ISD algorithm [Pra62] was gradually improved, e.g., [LB88, Leo88, Ste88, Dum91, FS09, BLP11].
The improved ISD algorithm [Ste88, Dum91] is called the Stern-Dumer variant (SD-ISD) in [HS13]. Later,
the May-Meurer-Thomae variant (MMT-ISD) [MMT11] and the Becker-Joux-May-Meurer variant (BJMM-
ISD) [BJMM12] improved the SD-ISD by using the generalized birthday algorithm [Wag02]. We give
an overview of the three ISD variants in Appendix C. Recently, several works [BBC+19, EB22, EMZ22]
reduced the significant space consumption of the MMT-ISD and BJMM-ISD algorithms. Our analysis does
not cover the ISD algorithms [BBC+19, EB22, EMZ22] with more efficient space consumption, and always
assume that sufficient memory is available which makes the LPN parameters more conservative.

Compared to the case of F2, the ISD algorithms to solve dual-LPN over larger fields are less studied.
An initial study of ISD over a field F with |F| > 2 was given by Coffey and Goodman [CG90], who
provided an asymptotic analysis of the Prange’s ISD algorithm over F. Peters [Pet10] generalized the more
efficient SD-ISD algorithm from binary field F2 to any finite field F. Later, Meurer [Meu12] proposed a new
generalization of the SD-ISD algorithm over any finite field.

12If there exists more efficient algorithms to find such a parity-check vector, then they can also be used to improve the ISD
algorithms.
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The NN-ISD algorithms [MO15, Hir16, GKH17, BM18, EKZ21] applied “nearest neighbors” search to
the SD-ISD or BJMM-ISD algorithms, and obtain better asymptotic complexities. However, these NN-ISD
algorithms introduce a quite large polynomial overhead, which makes them less efficient when analyzing the
concrete costs of low-noise LPN problems.

Previous analysis. Based on the concrete analysis of ISD attack in [HOSS18], Boyle et al. [BCGI18] used
an upper bound of the cost of the Prange’s ISD algorithm [Pra62] to evaluate the hardness of LPN problems
over any field against ISD attacks. As shown in Tables 6 and 7, the upper-bound formula cannot capture
accurately the cost of more advanced ISD variants [Ste88, Dum91, MMT11, BJMM12]. In the following,
we first summarize the known ISD variants, and then use the state-of-the-art ISD algorithm to evaluate the
hardness of LPN problems over finite fields 13.

Our analysis. For estimating the ISD cost of low-noise LPN problems, we distinguish two cases: binary
field F2 and other larger fields.

Binary field F2. For binary field F2, we adopt the state-of-the-art BJMM-ISD algorithm [BJMM12] to analyze
the concrete hardness of low-noise (dual-)LPN problems. From the expected time of BJMM-ISD shown
in Theorem 16 of Appendix C, we can see that it is hard to give a succinct formula to compute the cost of
BJMM-ISD. Thus, we choose to provide an estimator script (see Footnote 3), which allows to automatically
estimate the cost of the BJMM-ISD attack.

Larger fields. For the case of non-binary fields, we focus on the hardness of (dual-)LPN problems over
any finite field F with |F| ≥ 256 (especially for large fields with |F| ≥ 2ρ). For other field sizes (i.e.,
|F| ∈ {4, 8, 16, 32, 64, 128}), low-noise (dual-)LPN problems seem to be less interesting for PCG, MPC and
ZK applications. We adopt the generalized SD-ISD algorithm [Pet10] to analyze the cost of solving low-noise
(dual-)LPN problems over a field F. As such, we provide an estimator tool to automatically estimate the cost
of the SD-ISD attack.

Compared to the SD-ISD algorithm by Peters [Pet10], the SD-ISD variant by Meurer [Meu12] has
the performance advantage when the field size |F| < 128, and the advantage becomes vanishingly small
when |F| ≥ 128, which is also observed in prior works such as [Tor17, BCDL19]. Thus, for the case
that |F| ≥ 256, it is enough to adopt the Peters’s SD-ISD algorithm to evaluate the hardness of low-noise
(dual-)LPN problems. It is unclear how to extend the generalization approaches [Pet10, Meu12] to more
efficient MMT-ISD and BJMM-ISD algorithms for solving low-noise LPN over a field F with |F| > 2 and
make the resulting ISD algorithm be significantly more efficient than the SD-ISD variant [Pet10]. Even if
these generalization approaches can be efficiently applied in MMT-ISD and BJMM-ISD, the performance
advantage of MMT-ISD and BJMM-ISD (compared to SD-ISD) decreases when the field size increases, and
will diminish for a sufficiently large field.

For any finite field F, the generalized SD-ISD variant [Pet10] generates two sets S0 and S1 with size((k+ℓ)/2
p/2

)
· (|F| − 1)p/2, where p and ℓ are two additional parameters for the SD-ISD variant. Note that the

size of |S0| and |S1| increases exponentially with p. Following the work [Pet10], p should be quite small to
minimize the cost of going though sets S0 and S1, and ℓ is set as ℓ = log|F|

(
k/2
p

)
+ p log|F|(|F| − 1). If the

even integer p ̸= 0, then the cost of the generalized SD-ISD algorithm is at least O((k + ℓ)|F|), which is the
cost to just find identical elements in two sets S0 and S1. When the field size is large enough, we will have
to choose p = 0 and ℓ = 0 to minimize the cost of the generalized SD-ISD attack, according to the above
equation. In this case, the generalized SD-ISD attack actually becomes Pooled Gauss attack.

13 Torres and Sendrier [TS16] show that known variants of ISD have the same asymptotic complexity in the sub-linear error
weight regime, and the difference between the non-asymptotic exponent of some ISD variants is relatively small (but non-zero). We
pick more advanced ISD for a more accurate security estimate.
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C Variants of Information Set Decoding

Following the analysis [FS09, Sen11, HS13, TS16], we summarize the ISD variants by Stern-Dumer [Ste88,
Dum91], May et al. [MMT11] and Becker et al. [BJMM12]. We refer the reader to the corresponding papers
and the surveys [FS09, Sen11, HS13, TS16] for a more detailed description.

C.1 Stern-Dumer Variant

The SD-ISD attack introduces two additional parameters p and ℓ, and adjusts both parameters to minimize
the whole running time. Specifically, given an instance of the (HW,F2)-dual-LPN(N,N − k, t) problem
(H ∈ F(N−k)×N

2 ,y = H · e ∈ F(N−k)
2 ), the SD-ISD attack first transforms the instance to the following

equation (3) via partial Gaussian elimination, where U is a non-singular (N − k)× (N − k) matrix and P is
a random N ×N permutation matrix.

N − k − ℓ k + ℓ

1
. . .

1

R0 y0

U ·H ·P = , U · y =

0 R1 y1ℓ

(3)

Then, this attack finds e1 ∈ F(k+ℓ)
2 such that R1 · e1 = y1 and |e1| ≤ p via the following meet-in-the-middle

attack:

1. For each e1,0 ∈ F(k+ℓ)/2
2 with |e1,0| ≤ p/2, add the vector R1 ·

[
e1,0 0

]
into a sorted set S0.

2. For each e1,1 ∈ F(k+ℓ)/2
2 with |e1,1| ≤ p/2, add the vector y1 −R1 ·

[
0 e1,1

]
into a sorted set S1.

3. Search for identical elements in sets S0 and S1, and then add the corresponding vectors (e1,0 + e1,1) into
a set S ⊆ {e1 |R1 · e1 = y1}.

This attack repeats the above steps until |e0|+ |e1| ≤ t where e0 = R0 · e1 + y0, and then outputs a noise
vector e = P · (e0, e1)T.

Many variants [MMT11, BJMM12, MO15, BM18] improved the above step 3 of SD-ISD attack (finding
candidate e1) via the generalized birthday algorithm [Wag02], the representation technique [HJ10] and the
“Nearest Neighbours” search.

C.2 May-Meurer-Thomae Variant

The May-Meurer-Thomae variant (MMT-ISD) [MMT11] replaced the birthday algorithm of Stern-Dumer
variant [Ste88, Dum91] with an order-2 generalized birthday algorithm [Wag02]. This variant applied this
and the representation technique [HJ10] to improve ISD asymptotically and does as following,

1. For all e1,0 ∈ F(k+ℓ)/2
2 with |e1,0| ≤ p/4, store R1 ·

[
0 e1,0

]
in sorted S1 and S3 with S1 = S3.

2. For all e1,1 ∈ F(k+ℓ)/2
2 with |e1,1| ≤ p/4, store R1 ·

[
e1,1 0

]
in sorted S2 and store y1 − R1 ·[

e1,1 0
]

in sorted S4.
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3. Search from S1 to S4 and generate S ⊆ {(e1 |R1 · e1 = y1} by an order-2 generalized birthday
algorithm [Wag02].

Note that the set C is a singleton in the original algorithm. By allowing several c ∈ C we allow larger
values of r1 and give more flexibility in the search for optimal parameters. A larger r1 also allows smaller
memory requirements with the same algorithmic complexity.

C.3 Becker-Joux-May-Meurer Variant

The Becker-Joux-May-Meurer variant (BJMM-ISD) [BJMM12] further applied an order 3 generalized
birthday algorithm [Wag02] and does as following,

1. For all e1,0 ∈ F(k+ℓ)/2
2 with |e1,0| ≤ p2/2, store R1 ·

[
0 e1,0

]
in sorted S1, S3, S5 and S7 with

S1 = S3 = S5 = S7.

2. For all e1,1 ∈ F(k+ℓ)/2
2 with |e1,1| ≤ p2/2, store R1 ·

[
e1,1 0

]
in sorted S2, S4 and S6 with S2 =

S4 = S6 and store y1 −R1 ·
[
e1,1 0

]
in sorted S8.

3. Search from S1 to S8 and generate generate S ⊆ {(e1 |R1 · e1 = 0} by an order-3 generalized birthday
algorithm [Wag02], where p2 = O(p) is positive additional parameters.

C.4 Cost of ISD variants

We essentially follow and simplify the analysis done in [FS09, Sen11, HS13, TS16] and count complexity by
the number of field operations. The expected run-time of ISD attack consists of the below parts.

1. We denote TGauss as the cost of the partial Gaussian elimination. A naive implementation leads to
TGauss = (N − k − ℓ)(N − k)N field operation. Fast linear algebra [BA21] leads to TGauss =
(N − k − ℓ)(N − k)N/ log(N − k − ℓ).

2. We estimate the success probability of one iteration. It is common in existing literature [Sen11] that each
individual e1 leads independently to success with the probability

ε(p, ℓ)2ℓ ≈
(
N − k − ℓ

t− p

)
2ℓ
/(N

t

)
.

It follows that the probability of success of one iteration is equal to

P(p, ℓ) ≈ ε(p, ℓ)2ℓ|S|

The expected value of the set S will depend on various birthday decoding.

3. Complexity of various birthday decoding.

4. The final test cost 2|S|N field operation.

Theorem 14 (SD-ISD [HS13, Ste88, Dum91]). The (HW,F2)-LPN(k,N, t) problem can be solved by the
SD-ISD variant in expected time

TSD(N, k, t) = min
p,ℓ

1

P(p, ℓ)

(
TGauss + 2L0 ·N + 2E

[
|S|
]
·N
)
,

where L0 = |S1| = |S2| =
((k+ℓ)/2

p/2

)
and E

[
|S|
]
=

L2
0

2ℓ
.
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Theorem 15 (MMT-ISD variant [HS13, MMT11]). the (HW,F2)-LPN(k,N, t) problem can be solved in
expected time TMMT (N, k, t) by the MMT-ISD variant as below

TMMT (N, k, t) = min
ℓ,r1,p,|C|

1

P(p, ℓ)

(
TGauss + |C| ·N ·

(
4L0 +

2L2
0

2r1
+

2L4
0

2ℓ+r1

))
,

where L0 =
((k+ℓ)/2

p/4

)
and |S| = |C|L4

0

2ℓ+r1
.

Theorem 16 (BJMM-ISD variant [HS13, BJMM12]). The (HW,F2)-LPN(k,N, t) problem can be solved
in expected time TBJMM (N, k, t) by the BJMM-ISD variant as below

TBJMM (N, k, t) = min
p,ℓ,r1,r2,e1,e2

1

P(p, ℓ)

(
TGauss + (8S3 + 4C3 + 2C2 + 2C1) ·N

)
,

where S3 =
(
(k+ℓ)/2

p2

)
, C3 =

S2
3

2r2 , C2 =
C2

3
2r1 , C1 =

S2
1

2ℓ−r1−r2
, S1 = min{µ2C2,

(k+ℓ
p1
)

2r1+r2
}, |S| = min{µ1C1,

(k+ℓ
p )
2ℓ
},

µ1 =
(p1e1)(

k+ℓ−p1
p1−e1

)

(k+ℓ
p1
)

, µ2 =
(p2e2)(

k+ℓ−p2
p2−e2

)

(k+ℓ
p2
)

, p2 = p1/2 + e2 and p1 = p/2 + e1.
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