Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers Chun Guo Université Catholique de Louvain chun.guo.sc@gmail.com Jonathan Katz University of Maryland jkatz@cs.umd.edu Xiao Wang MIT & Boston University wangxiao@northwestern.edu Yu Yu Shanghai Jiao Tong University yuyu@cs.sjtu.edu.cn January 21, 2019 #### Abstract Many implementations of secure computation use fixed-key AES (modeled as a random permutation); this results in substantial performance benefits due to existing hardware support for AES and the ability to avoid recomputing the AES key schedule. Surveying these implementations, however, we find that most utilize AES in a heuristic fashion; in the best case this leaves a gap in the security proof, but in many cases we show it allows for explicit attacks. Motivated by this unsatisfactory state of affairs, we initiate a comprehensive study of how to use fixed-key block ciphers for secure computation—in particular for *OT extension* and *circuit garbling*—efficiently and securely. Specifically: - We consider several notions of pseudorandomness for hash functions (e.g., correlation robustness), and show provably secure schemes for OT extension, garbling, and other applications based on hash functions satisfying these notions. - We provide provably secure constructions, in the random-permutation model, of hash functions satisfying the different notions of pseudorandomness we consider. Taken together, our results provide end-to-end security proofs for implementations of secure-computation protocols based on fixed-key block ciphers (modeled as random permutations). Perhaps surprisingly, at the same time our work also results in noticeable performance improvements over the state-of-the-art. ## 1 Introduction Over the past few years, secure computation has transitioned from the realm of pure theory to the point where it is implemented in multiple software libraries (see [HHNZ19] for a recent survey), funded by various government agencies, marketed by many startup companies, and used in several real-world applications [BCD⁺09, BKK⁺16, LJA⁺18, HLOI16] This makes it critical to understand the security provided by *implementations*¹ of secure-computation protocols. Indeed, although published protocols typically come with proofs of security that can be independently verified by the community, published protocol descriptions often omit or ignore important low-level details, and ¹We stress that we are *not* referring to general software-security issues such as improper input handling or buffer-overflow attacks (though these are also important). Rather, the focus of this work is on *cryptographic* issues that arise in the course of implementation. researchers often apply performance optimizations in a haphazard way when implementing these protocols. In this work we study the use of fixed-key AES (or fixed-key block ciphers more generally) in implementations of secure computation. Using fixed-key AES in this context can be traced back to the work of Bellare et al. [BHKR13], who considered fixed-key AES for circuit garbling as part of their JustGarble framework. Prior to that point, most implementations of garbled circuits used a hash function such as SHA-256, modeled as a random oracle. But Bellare et al. showed that using fixed-key AES can be up to $50 \times$ faster than using a cryptographic hash function due to hardware support for AES provided by modern processors. (While it is also possible to garble circuits using AES with different keys at each gate, the overhead of key scheduling—required whenever the AES key changes—is substantial.) Bellare et al. designed several provably secure garbling schemes based on a fixed-key block cipher, and in doing so demonstrated significant performance improvements. Indeed, prior to their work CPU time was the main bottleneck for protocols based on circuit garbling; after the introduction of JustGarble, network throughput became the dominant factor. For this reason, fixed-key AES has been almost universally adopted in subsequent implementations of garbled circuits. Bellare et al. prove security of their constructions when the fixed-key block cipher is modeled as a random permutation. This random-permutation model (RPM) is analogous to the random-oracle model, and assumes that all parties have oracle access to a public, random permutation π : $\{0,1\}^k \to \{0,1\}^k$ and its inverse. Modeling a fixed-key block cipher as a random permutation is weaker than modeling the block cipher as an ideal cipher (which is also common); in particular, related-key attacks are not relevant in the fixed-key setting. Inspired by the work of Bellare et al., many subsequent works on efficient secure computation have relied on fixed-key AES for other purposes, especially oblivious transfer (OT) extension. Unfortunately, however, in this case proofs of security are generally missing. Let us clarify. Typically, published OT-extension protocols are based on a hash function H and are proven secure by modeling H as a random oracle. When the protocols are implemented, however, H is not instantiated using a cryptographic hash function but is instead instantiated haphazardly from a fixed-key block cipher. At best this leaves a gap in the security proofs, but at worst—as we show in Section 2—it leaves the implemented protocols vulnerable to explicit attacks. Even the work of Bellare et al. has the drawback that it is not modular. That is, they do not prove security of their garbling schemes based on some assumption about the "encryption scheme" used for each gate; instead, they prove security directly in the random-permutation model. This makes it difficult to apply their ideas to new garbling schemes that are developed, as any changes in the scheme require re-doing the entire proof. This was done, for example, in the analysis of the subsequent half-gates garbling scheme [ZRE15]. In their paper introducing the scheme, Zahur et al. follow a more modular approach: they construct their garbling scheme based on a hash function H and then prove that their scheme is secure if H satisfies a certain property that is specific to their scheme. They also claim without proof that when H is instantiated in a particular way based on a fixed-key cipher, then H satisfies their definition. This is a step forward, but still leaves a gap in the overall security proof. We believe this state of affairs is unsatisfactory. In a nutshell, the problem is that protocols are generally analyzed by cryptographers based on a hash function H viewed as a random oracle, but when these protocols are implemented then H is instantiated from a fixed-key block cipher in some unprincipled (and often insecure) way. In this paper, we attempt to resolve this mismatch as described next. #### 1.1 Our Contributions **Deficiencies of current implementations.** As already hinted at above, our first contribution is merely identifying the problem. We examined all state-of-the-art platforms for secure computation² and found that most of those using fixed-key AES were using it incorrectly; of those, many were vulnerable to explicit attacks. We refer to Section 2 for details. Faced with this chaotic status quo, we initiate a comprehensive study of how to securely and efficiently use fixed-key block ciphers for secure computation. We propose a modular approach: we first identify various properties that hash functions need to satisfy in order to prove different protocols secure, and then show how to efficiently construct hash functions provably satisfying these properties in the random-permutation model. In more detail: Identifying abstract security properties. We consider several notions of pseudorandomness³ for hash functions, some that were identified in previous work (e.g., correlation robustness [IKNP03] and circular correlation robustness [CKKZ12]) and others that are new. We then show how hash functions realizing these different notions can be used in a provably secure way for various flavors of OT extension (Section 4) as well as for circuit garbling (Section 5) and other applications (Section 6). Realizations from fixed-key block ciphers. We show provably secure constructions, in the RPM, of hash functions meeting the notions we consider (Section 7). Importantly, in our analyses we also provide concrete security bounds, something that is often lacking in prior work. We also discuss how to efficiently implement our constructions utilizing existing CPU instruction sets and pipelining (Section 8). Taken together, our work provides end-to-end security proofs for secure-computation protocols based on fixed-key block ciphers (in the OT-hybrid model). Somewhat surprisingly, at the same time our work also results in performance improvements of up to $3-4\times$ over the current state-of-the-art for OT extension and various other protocols; we refer to Section 8 for further discussion. ## 1.2 Alternate Approaches Recall that the problem we are addressing is that protocols are proven secure assuming access to a random oracle H, but then implemented with H instantiated improperly from a fixed-key block cipher. The approach we advocate, outlined in the previous section, is to prove protocols secure using weaker assumptions on H (in particular, falsifiable assumptions) and then to provably realize these assumptions in the random-permutation model. But one could imagine other ways of trying to solve the problem; these are discussed briefly here. One option is to simply instantiate H using a cryptographic hash function like SHA-256 or SHA-3, treating those as random oracles. The drawback of this approach is that such hash functions are at least $15-50\times$ slower than using fixed-key AES; see Table 3. Alternately, one could hope to instantiate H based on a fixed-key block cipher such that H is indifferentiable [MRH04] from a random oracle. This problem has attracted a lot of atten- ²See https://github.com/rdragos/awesome-mpc. ³The
properties we consider are incomparable to traditional security definitions for hash functions such as collision-resistance; in fact, in some cases we do not even need the hash function to be compressing. Nevertheless, we use the term "hash function" since the properties we need would traditionally be achieved using a hash function modeled as a random oracle. ⁴We cannot hope to construct the "base" oblivious transfers from fixed-key block ciphers, as it is known that this requires stronger assumptions. tion [Luc00, DRRS09, MPN10, MP15, DHT17, Lee17, BN18] but, as we now discuss, existing solutions are unsatisfactory. We are aware of only two approaches to constructing a random oracle H in the random-permutation model: the first corresponds roughly to letting H(x) be the (k-O(k))-bit truncation of $\pi(0^{O(k)}||x)$ (where we view k as a security parameter), and the second—called the XORP approach—defines $H(x) = \bigoplus_i \pi_i(x)$ where the $\{\pi_i\}$ represent independent random permutations. The first approach results in a hash function whose domain and range are much shorter than the domain/range of π , and would result in impractically poor security bounds if applied to AES with a block length of 128 bits. The second approach can be used to construct a random oracle mapping k-bit inputs to k-bit outputs given multiple random permutations on $\{0,1\}^k$, and thus could in principle be used to realize some of the security definitions we consider. Drawbacks of this approach, however, include: - Some of our definitions require compression, and it is unknown how to obtain a compressing random oracle that is both efficient and has acceptable concrete-security bounds starting from a random permutation on $\{0,1\}^k$. - The XORP approach requires two independent permutations, and two calls to those permutations; in some sense, this is inherent [BCS09, LMPW15]. The constructions we show here use only a single random permutation (and in some cases just a single call to that permutation), and are more efficient than XORP; we defer further discussion to Section 8. ## 1.3 Outline of the Paper In Section 2 we survey existing implementations of secure-computation protocols, focusing in particular on how they instantiate the underlying hash function based on fixed-key AES. We show that in many cases, the chosen instantiation allows for an explicit attack. Given this, we introduce in Section 3 various security definitions for hash functions, some of which have been considered before (e.g., correlation robustness) and some of which have not (e.g., tweakable correlation robustness). In the following sections we explore applications of hash functions satisfying these definitions to OT extension (Section 4), the half-gates garbling scheme (Section 5), and other protocols (Section 6). We address in Section 7 the question of constructing hash functions satisfying the various definitions from a fixed-key block cipher, when that block cipher is modeled as a random permutation. Finally, in Section 8 we evaluate the performance of our constructions and compare them to prior work. ## 2 The Current State of Affairs As discussed in Section 1, while many of the existing platforms for secure computation rely on fixed-key AES, very few of them utilize it properly. Here we discuss some of the problems we found. Before making our work public, we have contacted the authors of related works to confirm the issues that we found. ## 2.1 Oblivious-Transfer Extension We begin by describing some background about OT extension for context. At a high level, state-of-the-art OT extension protocols work in two phases: | Platform | Security goal | Implementation | |--------------------------------------|--------------------------|---| | APRICOT [Uni16a]
APRICOT [Uni16a] | Malicious
Semi-honest | $H(x,i) = \pi(x)$ $H(x,i) = \pi(x)$ | | SPDZ-2 [Uni16b]
libOTe [Rin] | Malicious
Malicious | $H(x,i) = \pi(x) \oplus x$
$H(x,i) = \pi(x) \oplus x$ | | libOTe [Rin] Unbound Tech [Unb18] | Malicious
Malicious | $H(x,i) = \text{SHA-256}(x)$ $H(x,i) = \pi(x \oplus i) \oplus x \oplus i$ | | EMP [WMK16] | Malicious | $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$ | Table 1: Insecure instantiations of the hash function in existing implementations of OT extension. $\pi(\cdot)$ denotes AES-128 with a fixed key. - 1. A receiver with choice bits $x_1, ..., x_m$ runs a protocol with a sender, after which the sender obtains a uniform k-bit string Δ and uniform k-bit strings $(\mathbf{a}_1, ..., \mathbf{a}_m)$ while the receiver obtains k-bit strings $(\mathbf{b}_1, ..., \mathbf{b}_m)$ such that $\mathbf{a}_i \oplus \mathbf{b}_i = x_i \Delta$. (Here, k is a security parameter.) A malicious receiver is able to influence the randomness and thus can potentially control the $\{\mathbf{b}_i\}$. - 2. The sender, with input messages $\{(\mathbf{m}_i^0, \mathbf{m}_i^1)\}_{i=1}^m$, computes and sends $\mathbf{c}_i^b := H(\mathbf{a}_i \oplus b \cdot \Delta, i) \oplus \mathbf{m}_i^b$ to the receiver, for $i = 1, \ldots, m$ and $b \in \{0, 1\}$. The receiver can "decrypt" only one value in each tuple; namely, it can recover $\mathbf{m}_i^{x_i} := H(\mathbf{b}_i, i) \oplus \mathbf{c}_i^{x_i}$ for all i. Assuming the first phase is carried out securely, it can be shown that the above protocol for OT extension is secure in both the semi-honest and malicious settings when H is a random oracle. Ishai et al. [IKNP03] showed that in the semi-honest setting it suffices for H to be correlation robust for random inputs (and in this case the additional input i to H is not needed). Asharov et al. [ALSZ15] proved that the protocol is secure in the malicious setting if H is strongly correlation robust (cf. Def. 1), i.e., even for adversarially chosen inputs. Unfortunately, prior to our work it was not clear how to construct a (strongly) correlation robust hash function from a fixed-key block cipher; for this reason, existing implementations made seemingly arbitrary choices (see next and Table 1). Below we show explicit attacks on these OT protocols, but for various reasons it may not always lead to an explicit attack on the entire implementation. In what follows the block cipher used is always AES-128, but we write π for consistency with the rest of the paper. **APRICOT** and libscapi. APRICOT [Uni16a], which is also internally used by libscapi [Bar16], sets $H(x,i) = \pi(x)$. This is insecure, even in the semi-honest case, since this H is invertible. (In particular, assume the receiver happens to know both \mathbf{m}_1^0 and \mathbf{m}_1^1 . Then it can deduce both \mathbf{a}_i and $\mathbf{a}_i \oplus \Delta$; hence it can recover Δ and learn all the rest of the sender's inputs.) We believe that their intent was to instantiate $H(x,i) = \pi(x) \oplus x$, which has been confirmed by the authors of APRICOT. They also pointed out that it has been changed to so in the newer version of SPDZ-2. As described in the next paragraph, this is, however, still insecure. **SPDZ-2, MP-SPDZ, and MASCOT.** The SPDZ-2 [Uni16b] implementation, which is also used by MP-SPDZ, sets $H(x,i) = \pi(x) \oplus x$. This choice was justified in the MASCOT paper [KOS16] by noting that it is inspired by the Matyas-Meyer-Oseas (MMO) construction, which can be proven collision resistant in the ideal-cipher model. This reasoning is invalid for many reasons, not least of which since collision resistance does not imply correlation robustness. In any case, this instantiation admits a simple attack in the malicious setting that exploits the fact that H has no dependence on i: by using $x_1 = x_2 = 1$ and forcing $\mathbf{b}_1 = \mathbf{b}_2 = \mathbf{b}$, the receiver can learn $\mathbf{m}_1^1, \mathbf{m}_2^1$, and also $$\mathbf{c}_1^0 \oplus \mathbf{c}_2^0 = H(\mathbf{b}, 1) \oplus H(\mathbf{b}, 2) = \mathbf{m}_1^0 \oplus \mathbf{m}_2^0$$ which is disallowed. Note that any instantiation of H that does not depend on i admits this attack in the malicious setting. **libOTe.** libOTe [Rin] provides two options for instantiating H(x,i). The first option is identical to the one just discussed. The second option instantiates H(x,i) = SHA-256(x). Besides the fact that this option no longer benefits from fixed-key AES, it also suffers from the same attack just described since there is no dependence on i. **Unbound Tech and EMP.** The blockchain MPC implementation by Unbound Tech [Unb18] sets $H(x,i) = \pi(x \oplus i) \oplus x \oplus i$. Although H now depends on i, a variant of the above attack still works if the malicious receiver chooses $\mathbf{b_1}$, $\mathbf{b_2}$ such that $\mathbf{b_1} \oplus 1 = \mathbf{b_2} \oplus 2$. EMP [WMK16] uses $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$, and a similar attack still applies. The ABY framework. The ABY framework [DSZ15] also sets $H(x,i) = \pi(x \oplus i) \oplus x \oplus i$, but the above attack no longer applies since ABY targets semi-honest security. However, ABY implements correlated-OT extension and random-OT extension rather than standard-OT extension. Existing proofs of security for the former [ALSZ13], even in the semi-honest setting, require H to be a random oracle (see further discussion in Section 4); it is not hard to show that the ABY instantiation of H is not indifferentiable from a random oracle. ## 2.2 Garbling As noted in the Introduction, JustGarble [BHKR13] is a garbling scheme that is proven secure in the random-permutation model. The proof is non-modular, however, and so it is difficult to apply the techniques to newer garbling schemes. In analyzing their half-gates construction based on an abstract hash function H, Zahur et al. [ZRE15] introduce a definition called "circular correlation robustness for naturally derived keys" (see Section 5) that is specific to their scheme, overly complicated, and difficult to work with. They then
instantiate H as $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$, and claim without proof that this satisfies their definition.⁵ Zhu et al. [ZH17] used a customized garbling scheme with the hash function instantiated as $H(x,i) = \pi(x \oplus i) \oplus x \oplus i$. Since the garbling scheme of Zhu et al. incorporates the free-XOR optimization [KS08], a proof of security requires H to satisfy a notion of *circular* correlation robustness [CKKZ12]. However, we show in Section 7.3 that the related hash function $H(x) = \pi(x) \oplus x$ is not circular secure (and the same applies to the hash function of Zhu et al. as well). ## 2.3 Other Protocols and Implementations Although we focus primarily on OT extension and garbling in this paper, we observe that unprincipled reliance on fixed-key AES has come up in other scenarios as well. **TinyLEGO.** Frederiksen et al. [FJNT15] showed that the wire-authentication protocol in TinyLEGO is secure if $H: \{0,1\}^k \to \{0,1\}^k$ is correlation robust for random inputs. In the implementation of $^{^{5}}$ It is unclear to us whether it satisfies their definition or not. Nevertheless, we believe that half-gates garbling using their instantiation of H can be proven secure directly in the random-permutation model. That is, we do not claim that their scheme is insecure, only that their analysis is buggy. TinyLEGO [NST17], they instantiated the hash function with an extra increasing counter as input, in the form of $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$, but there is no proof that this satisfies the required definition. **Free hash.** Fan et al. [FGK17] proposed a new way to "commit" to a garbled circuit. The proof of security for their construction assumes that the hash function H used is not only correlation robust but also *collision resistant*. Unfortunately, it is easy to see that the instantiation $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$ they use is not collision resistant, and this leads to an explicit attack on the binding property of their scheme. ## 3 Hash-Function Definitions Here we define several notions of "pseudorandomness" for hash functions, some of which have been considered explicitly before. Our definitions are tailored for a concrete-security treatment, but asymptotic versions of our definitions can easily be obtained by suitable modifications. In what follows, we let $F_{k,\ell}$ denote the set of all functions from $\{0,1\}^k$ to $\{0,1\}^\ell$, and write F_k for $F_{k,k}$. Our definitions are all phrased in the strongest sense possible—specifically, they allow the attacker to adaptively choose the inputs to its oracle—since our constructions satisfy them. For some applications, weaker notions (such as random inputs or non-adaptive choice of inputs) may suffice, and the definitions may be tailored appropriately for those cases. A notable feature of our definitions is that they allow for non-uniform choice of the key R. This is useful, for example, in analyzing schemes like half-gates garbling [ZRE15], where the least-significant bit of R is set to 1. Correlation robustness (cr). The notion of correlation robustness was first proposed by Ishai et al. [IKNP03] in the context of OT extension. Roughly, the definition says that H is correlation robust if the keyed function $f_R(x) \stackrel{\text{def}}{=} H(x \oplus R)$ is pseudorandom. In the work of Ishai et al., this was only required to hold for random inputs x, giving a definition analogous to a weak pseudorandom function; in other work [ALSZ15], the attacker was allowed to choose arbitrary inputs but only in a non-adaptive manner. Here we consider the strongest notion where the attacker is free to adaptively choose its inputs to its oracle. **Definition 1.** Let $H: \{0,1\}^k \to \{0,1\}^k$ be a function, and let \mathcal{R} be a distribution on $\{0,1\}^k$. For $R \in \{0,1\}^k$, define $\mathcal{O}_R^{\mathsf{cr}}(x) \stackrel{\mathrm{def}}{=} H(x \oplus R)$. For a distinguisher D, define $$\mathbf{Adv}^{\mathsf{cr}}_{H,\mathcal{R}}(D) \stackrel{\mathrm{def}}{=} \left| \Pr_{R \leftarrow \mathcal{R}} \left[D^{\mathcal{O}^{\mathsf{cr}}_{R}(\cdot)} = 1 \right] - \Pr_{f \leftarrow \mathsf{F}_{k}} \left[D^{f(\cdot)} = 1 \right] \right|.$$ H is $(t, q, \rho, \varepsilon)$ -correlation robust if for all D running in time at most t and making at most q queries to $\mathcal{O}_R^{\mathrm{cr}}(\cdot)$, and all \mathcal{R} with min-entropy at least ρ , it holds that $\mathbf{Adv}_{H,\mathcal{R}}^{\mathrm{cr}}(D) \leq \varepsilon$. Circular correlation robustness (ccr). Choi et al. [CKKZ12] extended the notion of correlation robustness to allow for a form of "circularity" needed to prove security of the free-XOR technique [KS08] for circuit garbling. Zahur et al. [ZRE15] used a weaker (but more complex) version of this definition, also in the context of garbling; more detail about their definition is given in Section 5. **Definition 2.** Let $H: \{0,1\}^k \to \{0,1\}^k$ be a function, and let \mathcal{R} be a distribution on $\{0,1\}^k$. For $R \in \{0,1\}^k$, define $\mathcal{O}_R^{\mathsf{ccr}}(x,b) \stackrel{\mathrm{def}}{=} H(x \oplus R) \oplus b \cdot R$. For a distinguisher D, define $$\mathbf{Adv}^{\mathsf{ccr}}_{H,\mathcal{R}}(D) \stackrel{\mathrm{def}}{=} \bigg| \Pr_{R \leftarrow \mathcal{R}} \left[D^{\mathcal{O}^{\mathsf{ccr}}_{R}(\cdot)} = 1 \right] - \Pr_{f \leftarrow \mathsf{F}_{k+1,k}} \left[D^{f(\cdot)} = 1 \right] \bigg|,$$ where we require that D never queries both (x,0) and (x,1) for any x. We say H is (t,q,ρ,ε) -circular correlation robust if for all D running in time at most t and making at most q queries to $\mathcal{O}_R^{\mathrm{ccr}}(\cdot)$, and all \mathcal{R} with min-entropy at least ρ , it holds that $\mathbf{Adv}_{H,\mathcal{R}}^{\mathrm{ccr}}(D) \leq \varepsilon$. Tweakable correlation robustness (tcr) and circular correlation robustness (tcr). By analogy with the notion of tweakable block ciphers [LRW11], we extend the notion of (circular) correlation robustness to also incorporate a tweak. As we discuss in Section 4, the addition of a tweak is crucial for security of some protocols in the malicious setting. Our definitions allow the attacker to repeat tweaks arbitrarily many times. For some applications, weaker notions (such as requiring non-repeating tweaks) may suffice, and the definitions may be modified appropriately for those cases. **Definition 3.** Let $H: \{0,1\}^{2k} \to \{0,1\}^k$ be a function, and let \mathcal{R} be a distribution on $\{0,1\}^k$. For $R \in \{0,1\}^k$, define $\mathcal{O}_R^{\mathsf{tcr}}(x,i) \stackrel{\text{def}}{=} H(x \oplus R,i)$ and $\mathcal{O}_R^{\mathsf{tcr}}(x,i,b) \stackrel{\text{def}}{=} H(x \oplus R,i) \oplus b \cdot R$. For a distinguisher D, define $$\mathbf{Adv}^{\mathsf{tcr}}_{H,\mathcal{R}}(D) \stackrel{\mathrm{def}}{=} \left| \Pr_{R \leftarrow \mathcal{R}} \left[D^{\mathcal{O}^{\mathsf{tcr}}_{R}(\cdot)} = 1 \right] - \Pr_{f \leftarrow \mathsf{F}_{2k|k}} \left[D^{f(\cdot)} = 1 \right] \right|$$ and $$\mathbf{Adv}^{\mathsf{tccr}}_{H,\mathcal{R}}(D) \stackrel{\mathrm{def}}{=} \Big| \Pr_{R \leftarrow \mathcal{R}} \left[D^{\mathcal{O}^{\mathsf{tccr}}_{R}(\cdot)} = 1 \right] - \Pr_{f \leftarrow \mathsf{F}_{2k+1,k}} \left[D^{f(\cdot)} = 1 \right] \Big|,$$ where in the latter case we require that D never queries both (x,i,0) and (x,i,1) for any x,i. We say H is (t,q,ρ,ε) -tweakable correlation robust $(resp., (t,q,\rho,\varepsilon)$ -tweakable circular correlation robust) if for all D running in time at most t and making at most q queries to $\mathcal{O}_R^{\mathsf{tcr}}(\cdot)$ $(resp., \mathcal{O}_R^{\mathsf{tcr}}(\cdot))$, and all R with min-entropy at least ρ , it holds that $\mathbf{Adv}_{H,R}^{\mathsf{tcr}}(D) \leq \varepsilon$ $(resp., \mathbf{Adv}_{H,R}^{\mathsf{tcr}}(D) \leq \varepsilon)$. **Definitions in the random-permutation model.** In this work we construct hash functions H satisfying the above definitions in the random-permutation model. That is, we assume a public, random permutation $\pi: \{0,1\}^k \to \{0,1\}^k$ and show constructions of H given oracle access to π . The security definitions are then modified by (1) taking probabilities also over uniform choice of π and (2) giving the distinguisher D oracle access to both π and its inverse π^{-1} . In this case, we can prove security of our constructions unconditionally so long as we bound the number of queries that D makes to π/π^{-1} and its other oracle. Thus, e.g., we say that a construction H in the random-permutation model is $(p, q, \rho, \varepsilon)$ -correlation robust if for all D making at most p queries to π/π^{-1} and q queries to $\mathcal{O}_R^{\mathsf{cr}}$, and all \mathcal{R} with min-entropy at least ρ , it holds that $\mathbf{Adv}_{H,\mathcal{R}}^{\mathsf{cr}}(D) \leq \varepsilon$. Relations between the definitions. It is easy to see that any H that is ccr (resp., tcr) is also cr (resp., tcr). It is also easy to see that any H that is tcr (resp., tcr) can be used to construct a hash function H' that is cr (resp., ccr). The construction we give in Section 7.2 is cr but not ccr. We are not aware of a generic transformation from cr (resp., ccr) to tcr (resp., tccr), however in Section 5 we show (implicitly) that any H that is ccr can be used to construct a hash function H' that satisfies tccr for random inputs and non-repeating tweaks. We show there that this weaker notion suffices for analyzing the half-gates garbling scheme. | Semi-honest security | | | | | | | | |----------------------|---------------|---------------|-----------|--|--|--|--| | Reference | OT type | Prior work | This work | | | | | | [IKNP03] | Standard OT | cr | cr | | | | | | [ALSZ13] | Correlated OT | random oracle | cr | | | | | | [ALSZ13] | Random OT | random oracle | cr | | | | | | Malicious security | | | | | | | | | [KOS15, ALSZ15] | Standard OT |
cr* | tcr | | | | | | [ALSZ15] | Correlated OT | random oracle | tcr | | | | | | [ALSZ15] | Random OT | random oracle | tcr | | | | | Table 2: Assumptions about H in protocols for OT extension. cr^* refers to correlation robustness with compression, for which no instantiation from a fixed-key cipher was known. ## Functionality $\mathcal{F}_{\Delta\text{-ROT}}$ **Initialize:** Upon receiving (Init, Δ) from P_A with $\Delta \in \{0,1\}^k$, and (Init) from P_B , store Δ and ignore subsequent Init commands. **Set up correlations:** Upon receiving (x_1, \ldots, x_m) from P_B with $x_i \in \{0, 1\}$ do: - 1. For each $i \in [m]$, sample uniform $\mathbf{a}_i, \mathbf{b}_i \in \{0,1\}^k$ such that $\mathbf{a}_i \oplus \mathbf{b}_i = x_i \cdot \Delta$. - 2. If P_A is corrupted, wait for \mathcal{A} to send $\{\mathbf{a}_i\}$ and recompute $\{\mathbf{b}_i\}$ accordingly. If P_B is corrupted, wait for \mathcal{A} to send $\{\mathbf{b}_i\}$ and recompute $\{\mathbf{a}_i\}$ accordingly. - 3. Send $\{\mathbf{a}_i\}$ to P_A and $\{\mathbf{b}_i\}$ to P_B . Global key query: If P_B is corrupted then \mathcal{A} can send a predicate $P:\{0,1\}^k \to \{0,1\}$ to the functionality after initialization but before sending its input. If $P(\Delta) = 1$, the functionality sends 1 to \mathcal{A} ; otherwise, the functionality aborts and notifies P_A . Figure 1: Functionality $\mathcal{F}_{\Delta\text{-ROT}}$. ## 4 Oblivious-Transfer Extension As discussed in Section 2.1, many existing implementations of OT extension based on a fixed-key cipher are insecure or, at best, cannot be proven secure. Part of the problem appears to be due to the fact that some OT-extension protocols are proven secure in the random-oracle model, but (efficient) instantiations of a random oracle from a fixed-key cipher are not known. To address this gap, we present in this section various flavors of OT-extension protocols based on hash functions satisfying the definitions from the previous section. In doing so, we improve on the assumptions used in several prior works, as summarized in Table 2. Here we consider both standard-OT extension and correlated-OT extension; we defer the case of random-OT extension to Appendix A. Since our focus is on instantiating the hash function H used in the second phase of OT extension (cf. the beginning of Section 2.1), we present all our protocols in the $\mathcal{F}_{\Delta\text{-ROT}}$ -hybrid model (see Figure 1). This ideal functionality abstracts the first phase of OT extension, and efficient protocols realizing it are known in both the semi-honest [ALSZ13] and malicious [KOS15] settings. ## Functionality \mathcal{F}_{S-OT} Upon receiving $((\mathbf{m}_1^0, \mathbf{m}_1^1), \dots, (\mathbf{m}_m^0, \mathbf{m}_m^1))$ from P_A and (x_1, \dots, x_m) from P_B with $x_i \in \{0, 1\}$, send $\{\mathbf{m}_i^{x_i}\}$ to P_B . Figure 2: Functionality \mathcal{F}_{S-OT} for standard OT. ## Protocol Π_{S-OT} Inputs: P_A has $(\mathbf{m}_1^0, \mathbf{m}_1^1), \dots, (\mathbf{m}_m^0, \mathbf{m}_m^1)$ and P_B has x_1, \dots, x_m with $x_i \in \{0, 1\}$. ## **Protocol:** - 1. P_A chooses uniform Δ and sends (Init, Δ) to $\mathcal{F}_{\Delta\text{-ROT}}$; P_B sends (Init) to $\mathcal{F}_{\Delta\text{-ROT}}$. - 2. P_B sends (x_1, \ldots, x_m) to $\mathcal{F}_{\Delta-ROT}$, which returns $\mathbf{a}_1, \ldots, \mathbf{a}_m$ to P_A and $\mathbf{b}_1, \ldots, \mathbf{b}_m$ to P_B . - 3. Semi-honest security: P_A sends $\mathbf{c}_i^0 := H(\mathbf{a}_i) \oplus \mathbf{m}_i^0$ and $\mathbf{c}_i^1 := H(\mathbf{a}_i \oplus \Delta) \oplus \mathbf{m}_i^1$ to P_B , who can then compute $\mathbf{m}_i^{x_i} := \mathbf{c}_i^{x_i} \oplus H(\mathbf{b}_i)$. Malicious security: P_{A} sends $\mathbf{c}_{i}^{0} := H(\mathbf{a}_{i}, i) \oplus \mathbf{m}_{i}^{0}$ and $\mathbf{c}_{i}^{1} := H(\mathbf{a}_{i} \oplus \Delta, i) \oplus \mathbf{m}_{i}^{1}$ to P_{B} , who can then compute $\mathbf{m}_{i}^{x_{i}} := \mathbf{c}_{i}^{x_{i}} \oplus H(\mathbf{b}_{i}, i)$. Figure 3: Protocol Π_{S-OT} in the $\mathcal{F}_{\Delta-ROT}$ -hybrid model. ## 4.1 Standard-OT Extension Figure 2 describes the standard OT functionality \mathcal{F}_{S-OT} . In Figure 3 we show a protocol realizing standard OT in the $\mathcal{F}_{\Delta-ROT}$ -hybrid model, in both the semi-honest and malicious settings. We remark that the result for the case of semi-honest security already follows from the work of Ishai et al. [IKNP03]. **Theorem 1** (Informal). If H is cr (resp., tcr) then protocol $\Pi_{S\text{-OT}}$ securely realizes $\mathcal{F}_{S\text{-OT}}$ for semi-honest (resp., malicious) adversaries in the $\mathcal{F}_{\Delta\text{-ROT}}$ -hybrid model. The theorem is somewhat informal since, e.g., we have not defined what it means for H to be cr but only what it means for it to be $(t, q, \rho, \varepsilon)$ -cr. A formal statement incorporating concrete security bounds can be obtained from the proof. *Proof.* Security in the $\mathcal{F}_{\Delta\text{-ROT}}$ -hybrid model for a corrupted P_A , whether semi-honest or malicious, holds perfectly and is trivial to show. We therefore focus on the case of an adversary \mathcal{A} corrupting P_B . The case of a semi-honest P_B is straightforward. (As noted earlier, this is also implicit in [IKNP03].) The simulator in this case extracts P_B 's inputs from its input to the $\mathcal{F}_{\Delta\text{-ROT}}$ functionality, sends these to the $\mathcal{F}_{S\text{-OT}}$ functionality to obtain $\{\mathbf{m}_i^{x_i}\}$, and then for all i sets $\mathbf{c}_i^{x_i} := H(\mathbf{b}_i) \oplus \mathbf{m}_i^{x_i}$ and chooses uniform $\mathbf{c}_i^{1-x_i}$. It is immediate that correlation robustness of H implies that this results in a view for P_B that is indistinguishable from its view in a real execution. In the malicious case the simulator is almost the same as before, but the proof is more involved. For completeness, we describe the simulator S in full: - 1–2. S obtains the inputs (x_1, \ldots, x_m) , along with the values $\{\mathbf{b}_i\}_{i \in [m]}$, that A sends to $\mathcal{F}_{\Delta\text{-ROT}}$. S sends (x_1, \ldots, x_m) to $\mathcal{F}_{S\text{-OT}}$, which returns $(\mathbf{m}_0^{x_0}, \ldots, \mathbf{m}_m^{x_m})$. - \mathcal{S} chooses a uniform Δ and answers \mathcal{A} 's global key query (if any) using Δ . ## Functionality \mathcal{F}_{C-OT} Upon receiving $(\Delta_1, \ldots, \Delta_m)$ from P_A and (x_1, \ldots, x_m) from P_B with $x_i \in \{0, 1\}$ do: - 1. For each $i \in [m]$, sample uniform $\mathbf{m}_i^0 \in \{0,1\}^k$ and set $\mathbf{m}_i^1 := \mathbf{m}_i^0 \oplus \Delta_i$. - 2. If P_A is corrupted, wait for \mathcal{A} to send $\{\mathbf{m}_i^0\}$ and recompute $\{\mathbf{m}_i^1\}$ accordingly. If P_B is corrupted, wait for \mathcal{A} to send $\{\mathbf{m}_i^{x_i}\}$ and recompute $\{\mathbf{m}_i^{1-x_i}\}$ accordingly. - 3. Send $\{\mathbf{m}_i^0\}$ to P_A and $\{\mathbf{m}_i^{x_i}\}$ to P_B . Figure 4: Functionality $\mathcal{F}_{\mathsf{C-OT}}$ for correlated OT. ## Protocol $\Pi_{C\text{-OT}}$ **Inputs:** P_A has $\Delta_1, \ldots, \Delta_m \in \{0,1\}^k$ and P_B has x_1, \ldots, x_m with $x_i \in \{0,1\}$. #### **Protocol:** - 1. P_A chooses uniform Δ and sends (Init, Δ) to $\mathcal{F}_{\Delta\text{-ROT}}$; P_B sends (Init) to $\mathcal{F}_{\Delta\text{-ROT}}$. - 2. P_B sends (x_1, \ldots, x_m) to $\mathcal{F}_{\Delta-ROT}$, which returns $\mathbf{a}_1, \ldots, \mathbf{a}_m$ to P_A and $\mathbf{b}_1, \ldots, \mathbf{b}_m$ to P_B . - 3. **Semi-honest security:** P_{A} computes $\mathbf{m}_{i}^{0} := H(\mathbf{a}_{i})$ and sends $\mathbf{c}_{i} := H(\mathbf{a}_{i}) \oplus H(\mathbf{a}_{i} \oplus \Delta) \oplus \Delta_{i}$ to P_{B} , who can then compute $\mathbf{m}_{i}^{x_{i}} := H(\mathbf{b}_{i}) \oplus x_{i}\mathbf{c}_{i}$. Malicious security: P_A computes $\mathbf{m}_i^0 := H(\mathbf{a}_i, i)$ and sends $\mathbf{c}_i := H(\mathbf{a}_i, i) \oplus H(\mathbf{a}_i \oplus \Delta, i) \oplus \Delta_i$ to P_B , who can then compute $\mathbf{m}_i^{x_i} := H(\mathbf{b}_i, i) \oplus x_i \mathbf{c}_i$. Figure 5: Protocol Π_{C-OT} in the $\mathcal{F}_{\Delta-ROT}$ -hybrid model. 3. For all i, S sets $\mathbf{c}_i^{x_i} := H(\mathbf{b}_i, i) \oplus \mathbf{m}_i^{x_i}$ and chooses uniform $\mathbf{c}_i^{1-x_i}$. It sends the $\{\mathbf{c}_i^b\}$ to P_B . If \mathcal{A} makes no global key query then it is immediate that if H is (t, m, k, ε) -tweakable correlation robust then for any \mathcal{A} running in time at most t the advantage of \mathcal{A} in distinguishing the simulated view from the real view is at most $\varepsilon + 2^{-k}$ (with the second term accounting for the probability that $\Delta = 0^k$). Assume that for all $0 \le \rho \le k$ it holds that H is $(t, m, \rho, \varepsilon(\rho))$ -tweakable correlation robust. Say the global key query P of \mathcal{A} is such that $|\{\Delta : P(\Delta) = 1\}| = 2^{\rho}$. Then with probability $2^{\rho-k}$ the attacker reduces the min-entropy of Δ to ρ , but with the remaining probability the functionality aborts. The maximum distinguishing advantage of \mathcal{A} is thus $\max_{\rho} \{2^{\rho-k} \cdot \varepsilon(\rho)\} + 2^{-k}$. ## 4.2 Correlated OT Correlated OT, proposed by Asharov et al. [ALSZ13], is a weaker form of OT in which the sender can only specify the XOR of its "messages" (which are otherwise chosen uniformly by the functionality); the relevant ideal functionality \mathcal{F}_{C-OT} is given in Figure 4. Prior work showing correlated-OT
extension protocols [ALSZ13, ALSZ15] requires a programmable random oracle, even for semi-honest security, because the simulator needs to program the output of H to ensure consistency with the output from the ideal functionality. In fact, it appears difficult to efficiently realize the ideal functionality as defined by Asharov et al. without a programmable random oracle, and for this reason we weaken the ideal functionality to allow the adversary to choose its output. (Interestingly, we observe that prior work [ALSZ15] does not actually realize the ideal functionality of Asharov et al. [ALSZ13] but instead also realizes the weaker version we define here. See Appendix B for more details.) This ideal functionality still suffices for applications to secure computation. In Figure 5 we show a protocol that realizes this functionality in both the semi-honest and malicious settings. **Theorem 2** (Informal). If H is cr (resp., tcr) then protocol $\Pi_{\mathsf{C-OT}}$ securely realizes $\mathcal{F}_{\mathsf{C-OT}}$ for semi-honest (resp., malicious) adversaries in the $\mathcal{F}_{\Delta-\mathsf{ROT}}$ -hybrid model. The comment following Theorem 1 applies here as well. *Proof.* As in the case of Theorem 1, security for an adversary \mathcal{A} corrupting P_A is perfect and easy to show. We thus focus on the case of a corrupted P_B . We consider the malicious setting; the semi-honest setting follows similarly. The simulator $\mathcal S$ for a malicious $\mathsf P_\mathsf B$ is as follows: - 1–2. S obtains the inputs (x_1, \ldots, x_m) , as well as the values $\{\mathbf{b}_i\}_{i \in [m]}$, that A sends to $\mathcal{F}_{\Delta\text{-ROT}}$. S also chooses a uniform Δ and answers A's global key query (if any) using Δ . - 3. \mathcal{S} chooses uniform $\{\mathbf{c}_i\}$ and sends them to P_B . It sets $\mathbf{m}_i^{x_i} := H(\mathbf{b}_i, i) \oplus x_i \mathbf{c}_i$ and sends (x_1, \ldots, x_m) and $\{\mathbf{m}_i^{x_i}\}$ to $\mathcal{F}_\mathsf{C-OT}$. The proof of indistinguishability (for the joint distribution on the output of P_A and the view of P_B) is similar to the proof of Theorem 1. ## 5 Revisiting the Half-Gates Garbling Scheme Zahur et al. [ZRE15] introduced the half-gates garbling scheme based on an abstract hash function H. To analyze the scheme, Zahur et al. introduce a definition called "circular correlation robustness for naturally derived keys," and prove security for their garbling scheme when H satisfies that definition. They then claim, without proof, that the hash function $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$ satisfies their definition. It is not clear to us that this is the case (but see footnote 5). In particular, a distinguisher \mathcal{D} can generate a set \mathcal{X} containing t random x_i 's and check if there exist $i \neq j \leq q$ and a $\mathcal{X}' \subset \mathcal{X}$, such that $|\mathcal{X}'| > 1$ and $\bigoplus_{v \in \mathcal{X}'} 2v = i \oplus j$. If so, \mathcal{D} can partition \mathcal{X}' into \mathcal{X}'_1 and \mathcal{X}'_2 , and make oracle queries $\mathcal{O}(\bigoplus_{v \in \mathcal{X}'_1} 2v, i, 0)$ and $\mathcal{O}(\bigoplus_{v \in \mathcal{X}'_2} 2v, j, 1)$. The XOR of them is R in the real world. The desired bound for their construction is $O((tq+q^2)/2^k)$, but the above happens with probability roughly $2^tq^2/2^k$ where \mathcal{D} needs to check all 2^t subsets of \mathcal{X} ; we can easily modify it to obtain a \mathcal{D} with running time t and distinguishing probability at least $tq^2/2^k$. In this section, we revisit the assumption needed to prove security of the half-gates garbling scheme. (Everything we say here applies to the privacy-free version of the scheme as well.) We weaken the definition of circular correlation robustness to match exactly what is needed for the security proof of Zahur et al., and then show how to achieve the definition based on the notions introduced in Section 3. The notion of "circular correlation robustness for naturally derived keys" can be viewed as a form of tweakable circular correlation robustness where the attacker does not have full control over the queries made to the oracle $\mathcal{O}_R^{\mathsf{tcr}}$ (cf. Def. 3). We proceed to give the details. Let $H:\{0,1\}^{2k} \to \{0,1\}^k$ be a function, and let \mathcal{R} be a distribution on $\{0,1\}^k$. We say a sequence of operations $\mathcal{Q} = (Q_1, \ldots, Q_q)$ is natural if each Q_i is one of the following: 1. $$x_i \leftarrow \{0,1\}^k$$. - 2. $x_i := x_{i_1} \oplus x_{i_2}$, where $i_1 < i_2 < i$. - 3. $x_i := H(x_{i_1}, i)$, where $i_1 < i$. - 4. $x_i := \mathcal{O}(x_{i_1}, i, b)$, where $i_1 < i$. Fix some natural sequence \mathcal{Q} of length q. In the real-world experiment, denoted $\mathsf{Real}_{H,\mathcal{Q},\mathcal{R}}$, a key R is sampled from \mathcal{R} and then the oracle \mathcal{O} in step 4, above, is set to $\mathcal{O}_R^{\mathsf{tccr}}$. In the ideal-world experiment, denoted $\mathsf{Ideal}_{\mathcal{Q}}$, the oracle \mathcal{O} is instead a function chosen uniformly from $\mathsf{F}_{2k+1,k}$. Either experiment defines a distribution (determined by executing the operations in \mathcal{Q} in order) over values x_1, \ldots, x_q , which are output by the experiment. **Definition 4.** For $H, \mathcal{Q}, \mathcal{R}$ as above and a distinguisher D, define $\mathbf{Adv}^{\mathsf{ccrnd}}_{H,\mathcal{O},\mathcal{R}}(D)$ as $$\Big|\Pr_{\{x_i\}\leftarrow \mathsf{Real}_{H,\mathcal{Q},\mathcal{R}}} \left[D(\{x_i\}) = 1\right] - \Pr_{\{x_i\}\leftarrow \mathsf{Ideal}_{\mathcal{Q}}} \left[D(\{x_i\}) = 1\right]\Big|.$$ We say H is $(t, q, \rho, \varepsilon)$ -circular correlation robust for naturally derived keys if for all D running in time at most t, all Q of length q, and all R with min-entropy at least ρ , it holds that $\mathbf{Adv}_{H,Q,R}^{\mathsf{ccrnd}}(D) \leq \varepsilon$. It is immediate that a tccr hash function satisfies the above definition. But this is overkill, and we show now that a family of hash functions satisfying the notion can be constructed from any H that is ccr. Specifically, we show that the keyed function $H'_S(x,i) = H(S \oplus x \oplus i)$ satisfies the above definition when S is uniform. (We stress, however, that S is considered public and so in particular is also given to D.) Note that in the context of the half-gates scheme, the circuit garbler would choose S and send it (along with the garbled circuit) to the evaluator. **Theorem 3.** Let H be $(t, q, \rho, \varepsilon)$ -ccr. Then H'_S as defined above is $(t, q, \rho, \varepsilon')$ -circular correlation robust for naturally derived keys (where the probabilities are also taken over choice of S) with $\varepsilon' = 2\varepsilon + q^2/2^{k+1}$. *Proof.* Define $H_S(x) = H(S \oplus x)$, so that $H'_S(x,i) = H_S(x \oplus i)$. Fix some sequence $\mathcal{Q} = \{Q_1, \ldots, Q_q\}$. Consider the random variables x_1, \ldots, x_q that are defined during the course of experiment $\mathsf{Real}_{H',\mathcal{Q},\mathcal{R}}$, and let Coll denote the event that there exist distinct i_1, i_2 with $x_{i_1} \oplus i_1 = x_{i_2} \oplus i_2$. To bound the probability of Coll, note that all queries to H_S throughout the course of the experiment (which can occur either as "type 3" or "type 4" operations) are determined independently of S. Consider a modified experiment $\operatorname{Real}_{\mathcal{Q},\mathcal{R}}^*$ in which H_S is replaced with a function f chosen uniformly from F_k . Viewing S as the key, and using the fact that H is correlation robust, we must have $$\left| \Pr_{\mathsf{Real}_{H',\mathcal{Q},\mathcal{R}}}[\mathsf{Coll}] - \Pr_{\mathsf{Real}_{\mathcal{Q},\mathcal{R}}}[\mathsf{Coll}] \right| \leq \varepsilon.$$ Each operation Q_i in $\mathsf{Real}^*_{\mathcal{Q},\mathcal{R}}$ is one of the following: - 1. $x_i \leftarrow \{0,1\}^k$. - 2. $x_i := x_{i_1} \oplus x_{i_2}$, where $i_1 < i_2 < i$. - 3. $x_i := f(x_{i_1} \oplus i)$, where $i_1 < i$. - 4. $x_i := f(R \oplus x_{i_1} \oplus i) \oplus bR$, where $i_1 < i$. Fix some distinct i_1, i_2 . We have $$x_{i_1} \oplus x_{i_2} = \bigoplus_{i \in \mathcal{I}} x_i \oplus \bigoplus_{j \in \mathcal{J}} f(x_j \oplus i_j) \oplus \bigoplus_{k \in \mathcal{K}} f(R \oplus x_k \oplus i_k) \oplus bR,$$ for some sets $\mathcal{I}, \mathcal{J}, \mathcal{K} \subset [q]$ and $b \in \{0,1\}$. Note that Coll occurs iff $x_{i_1} \oplus x_{i_2} = i_1 \oplus i_2$. If the above expression is syntactically 0 (i.e., $\mathcal{I} = \mathcal{J} = \mathcal{K} = \emptyset$ and b = 0), then Coll cannot occur. If that is not the case, then at least one of $\mathcal{I}, \mathcal{J}, \mathcal{K}$ must be nonempty (note that b = 1 implies that $\mathcal{K} \neq \emptyset$). But then the probability that $x_{i_1} \oplus x_{i_2} = i_1 \oplus i_2$ is at most 2^{-k} . So, by a union bound, we find that the probability of Coll in $\text{Real}_{\mathcal{Q},\mathcal{R}}^*$ is at most $q^2/2^{k+1}$. Hence the probability of Coll in $\text{Real}_{\mathcal{U},\mathcal{Q},\mathcal{R}}$ is at most $q^2/2^{k+1} + \varepsilon$. Conditioned on that event that Coll does not occur in $\text{Real}_{H',\mathcal{Q},\mathcal{R}}$, no two queries to $H(R \oplus \cdot)$ as part of evaluating a "type 4" operation $\mathcal{O}(x_i,i,b) = H(R \oplus (S \oplus x_i \oplus i)) \oplus bR$ ever repeat, and thus we can construct from D a legal distinguisher against H in the sense of circular correlation robustness. Viewing R as the key, this implies that the distinguishing advantage of D is at most $$\Pr_{\mathsf{Real}_{H',\mathcal{Q},\mathcal{R}}}[\mathsf{CoII}] + \varepsilon.$$ This completes the proof. ## 6 Other Applications of Correlation Robustness Here we describe two other applications of correlation robust hash functions to secure
distributed computing. Our discussion here is brief only because the improvements, once described, are immediate. We defer discussion about concrete performance improvements to Section 8, where we show a $3 \times$ improvement for both applications. ## 6.1 Length Extension for OT A well-known technique for performing OT of long messages is to first carry out OT for (short) keys, and then to encrypt each message with the corresponding key. Thus, at a high level, we need to encrypt each of ℓ messages m_1, \ldots, m_ℓ with the corresponding key from among k_1, \ldots, k_ℓ . While this can of course be done using a block cipher, the natural approach to doing so would involve keying the cipher with each of the ℓ keys, thus imposing the cost of ℓ key-scheduling operations. We observe that it is possible to do better using a correlation robust hash function H. Let $m_i = m_i^1, \ldots, m_i^t$, where each block m_i^j is k bits long. Then the encryption c_i^1, \ldots, c_i^t of each message m_i can be done by setting $$c_i^j = H(j \oplus k_i) \oplus m_i^j$$. (We do not need randomized encryption here since each key is used to encrypt just one message.) Security follows directly from correlation robustness of H. #### 6.2 The GGM Tree and Distributed Point Functions The GGM tree construction [GGM86] involves a binary tree in which the label of a node is used to derive the label of its children using a length-double pseudorandom generator (PRG) G. If G is instantiated using AES in counter mode, then deriving the labels for a leaf of the tree will require multiple key-scheduling operations. We observe that G can instead be instantiated using a correlation robust hash via $$G(k) = H(1 \oplus k) \parallel H(2 \oplus k).$$ One recent application of the GGM tree is to the construction of distributed point functions [BGI15], which have in turn found application in secure-computation protocols. ## 7 Instantiating Hash Functions in the RPM In this section, we show constructions of hash functions based on a random permutation π that satisfy the definitions from Section 3. Our proofs all rely on the H-coefficient technique, which we review in Section 7.1. ## 7.1 The H-Coefficient Technique We briefly recall the H-coefficient technique [Pat09, CS14], specialized for our proofs in the following three sections. In all cases we consider a deterministic distinguisher D given access to two oracles. The first oracle is always a random permutation π on $\{0,1\}^k$ (and its inverse). The second oracle \mathcal{O} can take two forms: in the real world it is a function that depends on a key R sampled from a distribution \mathcal{R} , while in the ideal world it is a random function with range $\{0,1\}^k$. We are interested in bounding the maximum difference between the probabilities that D outputs 1 in the real world vs. the ideal world, where the maximum is taken over all D making p queries to its first oracle and q queries to its second oracle. We define a transcript of D's interaction by $$Q = (Q_{\pi}, Q_{\mathcal{O}}, R),$$ where $Q_{\pi} = \{(x_1, y_1), \ldots\}$ records D's queries/answers to/from π or π^{-1} (with $(x, y) \in Q_{\pi}$ meaning $\pi(x) = y$, regardless of whether the query was to π or π^{-1}) and $Q_{\mathcal{O}} = \{(w_1, z_1), \ldots\}$ records D's queries/answers to/from the second oracle. A key R is appended to the transcript as well (even though it is not part of the view of D) to facilitate the analysis: in the real world, this is the key used by the second oracle, whereas in the ideal world it is simply an independent key sampled from R. A transcript Q is attainable for some fixed D if there exist some oracles such that the interaction of D with those oracles would lead to transcript Q. Fix some D. Let \mathcal{T} denote the set of attainable transcripts, and let $\Pr_{\mathsf{real}}[\cdot]$ and $\Pr_{\mathsf{ideal}}[\cdot]$ denote the probabilities of events in the real and ideal worlds, respectively. The H-coefficient technique involves defining a partition of \mathcal{T} into a "bad" set $\mathcal{T}_{\mathsf{bad}}$ and a "good" set $\mathcal{T}_{\mathsf{good}} = \mathcal{T} \setminus \mathcal{T}_{\mathsf{bad}}$, and then showing that $$\Pr_{\mathsf{ideal}}[\mathcal{Q} \in \mathcal{T}_{\mathsf{bad}}] \leq \varepsilon_1$$ and $$\forall \mathcal{Q} \in \mathcal{T}_{\mathsf{good}}: \ \frac{\Pr_{\mathsf{real}}[\mathcal{Q}]}{\Pr_{\mathsf{ideal}}[\mathcal{Q}]} \geq 1 - \varepsilon_2.$$ It is then possible to show that the distinguishing advantage of D is at most $\varepsilon_1 + \varepsilon_2$. One key insight of the H-coefficient technique is that the ratio $\Pr_{\mathsf{real}}[\mathcal{Q}]/\Pr_{\mathsf{ideal}}[\mathcal{Q}]$ is equal to the ratio between the probability that the real-world oracles are consistent with \mathcal{Q} and the probability that the ideal-world oracles are consistent with \mathcal{Q} . Now, for any attainable transcript $\mathcal{Q} = (\mathcal{Q}_{\pi}, \mathcal{Q}_{\mathcal{Q}}, R)$, the probability that the ideal world is consistent with \mathcal{Q} is always exactly $$\frac{\Pr_{\mathcal{R}}[R]}{(2^k)_p \cdot 2^{kq}},\tag{1}$$ where for integers $1 \le b \le a$, we set $$(a)_b = a \cdot (a-1) \cdots (a-b+1)$$ with $(a)_0 = 1$ by convention. This is so since the probability that a random permutation on $\{0,1\}^k$ is consistent with the p queries in \mathcal{Q}_{π} is exactly $1/(2^k)_p$; the probability that a random function with range $\{0,1\}^k$ is consistent with the q queries to $\mathcal{Q}_{\mathcal{O}}$ is exactly $1/2^{kq}$; and the probability that the key is R is exactly $\Pr_{\mathcal{R}}[R]$. Bounding the distinguishing advantage of D thus reduces to bounding the probability that the real world is consistent with transcripts $\mathcal{Q} \in \mathcal{T}_{good}$. Let $\pi \vdash \mathcal{Q}_{\pi}$ denote the event that permutation π is consistent with the queries/answers in \mathcal{Q}_{π} , i.e., that $\pi(x) = y$ for all $(x,y) \in \mathcal{Q}_{\pi}$. Since, in the real world, the behavior of the second oracle is completely determined by π and R, we can also write $(\pi,R) \vdash \mathcal{Q}_{\mathcal{O}}$ to denote the event that permutation π and key R are consistent with the queries/answers in $\mathcal{Q}_{\mathcal{O}}$. For a (good) transcript $\mathcal{Q} = (\mathcal{Q}_{\pi}, \mathcal{Q}_{\mathcal{O}}, R)$, the probability that the real world is consistent with \mathcal{Q} is exactly $$\Pr[(\pi, R) \vdash \mathcal{Q}_{\mathcal{O}} \mid \pi \vdash \mathcal{Q}_{\pi}] \cdot \Pr[\pi \vdash \mathcal{Q}_{\pi}] \cdot \Pr_{\mathcal{R}}[R]$$ (using independence of R and π). We have $\Pr[\pi \vdash \mathcal{Q}_{\pi}] = 1/(2^k)_p$ exactly as before. The crux of the proof thus reduces to bounding $\Pr[(\pi, R) \vdash \mathcal{Q}_{\mathcal{O}} \mid \pi \vdash \mathcal{Q}_{\pi}]$. We can equivalently write this as $\Pr[\forall (w, z) \in \mathcal{Q}_{\mathcal{O}} : \mathcal{O}_R^{\pi}(w) = z \mid \pi \vdash \mathcal{Q}_{\pi}]$. ## 7.2 Correlation Robustness We begin by showing a construction that achieves correlation robustness. We refer to the resulting hash function as MMO since it is reminiscent of (though not identical to) the Matyas-Meyer-Oseas construction. Namely, we define $$\mathsf{MMO}^{\pi}(x) \stackrel{\mathrm{def}}{=} \pi(x) \oplus x.$$ **Theorem 4.** If π is modeled as a random permutation then MMO^{π} is (p,q,ρ,ε) -correlation robust, where $$\varepsilon = \frac{2pq}{2^{\rho}} + \frac{q^2}{2^{k+1}}.$$ *Proof.* We consider a deterministic distinguisher D making queries to two oracles. The first is a random permutation π on $\{0,1\}^k$ (and its inverse); in the real world, the second oracle is $\mathcal{O}_R^{\mathsf{cr}}(\cdot) = \mathsf{MMO}^\pi(R \oplus \cdot)$ (for R sampled from a distribution \mathcal{R}), and in the ideal world it is an independent random function from $\{0,1\}^k$ to $\{0,1\}^k$. As in Section 7.1, we denote the transcript of D's interaction by $\mathcal{Q} = (\mathcal{Q}_\pi, \mathcal{Q}_\mathcal{O}, R)$. We only consider attainable transcripts from now on. We say a transcript $Q = (Q_{\pi}, Q_{\mathcal{O}}, R)$ is bad if either: - (B-1) There is a query $(w, z) \in \mathcal{Q}_{\mathcal{O}}$ and a query of the form $(R \oplus w, \star)$ or of the form $(\star, R \oplus w \oplus z)$ in \mathcal{Q}_{π} . - (B-2) There exist distinct queries $(w_i, z_i), (w_j, z_j) \in \mathcal{Q}_{\mathcal{O}}$ such that $w_i \oplus z_i = w_j \oplus z_j$. In the ideal world, for some fixed queries $(w,z) \in \mathcal{Q}_{\mathcal{O}}$ and $(x,y) \in \mathcal{Q}_{\pi}$, we have $$\Pr[R \oplus w = x] = \Pr[R = w \oplus x] \le \frac{1}{2\rho}$$ as R has min-entropy ρ . Thus the probability of (B-1) is at most $2pq \cdot 2^{-\rho}$. Similarly, the probability of (B-2) is $$\Pr[\exists i \neq j : w_i \oplus z_i = w_j \oplus z_j] = \binom{q}{2} \cdot \frac{1}{2^k} \le q^2/2^{k+1}$$ since both z_i and z_j are random. Fix a good transcript $Q = (Q_{\pi}, Q_{\mathcal{O}}, R)$. The probability that the ideal world is consistent with Q is exactly (1). The probability that the real world is consistent with Q is $$\frac{\Pr[\forall (w, z) \in \mathcal{Q}_{\mathcal{O}} : \mathcal{O}_{R}^{\mathsf{cr}}(w) = z \mid \pi \vdash \mathcal{Q}_{\pi}]}{(2^{k})_{p}} \cdot \Pr_{\mathcal{R}}[R].$$ We can express the numerator above as $$\prod_{i=1}^{q} \Pr[\mathcal{O}_{R}^{\mathsf{cr}}(w_{i}) = z_{i} \mid \pi \vdash \mathcal{Q}_{\pi} \land \forall j < i : \mathcal{O}_{R}^{\mathsf{cr}}(w_{j}) = z_{j}].$$ Fix some i. Note that $\mathcal{O}_R^{\mathsf{cr}}(w_i) = z_i$ iff $\mathsf{MMO}^{\pi}(R \oplus w_i) = z_i$, i.e., $\pi(R \oplus w_i) = R \oplus w_i \oplus z_i$. Moreover, since the transcript is good there is no query of the form $(R \oplus w_i, \star)$ in \mathcal{Q}_{π} (since (B-1) does not occur), nor is
$\pi(R \oplus w_i)$ determined by the fact that $\mathcal{O}_R^{\mathsf{cr}}(w_j) = z_j$ for all j < i (since all queries to $\mathcal{O}_R^{\mathsf{cr}}$ are distinct). Similarly, there is no query of the form $(\star, R \oplus w_i \oplus z_i)$ in \mathcal{Q}_{π} (since (B-1) does not occur), nor is $\pi^{-1}(R \oplus w_i \oplus z_i)$ determined by the fact that $\mathcal{O}_R^{\mathsf{cr}}(w_j) = z_j$ for all j < i (since (B-2) does not occur). Thus, we have $$\Pr[\mathcal{O}_R^{\sf cr}(w_i) = z_i \mid \pi \vdash \mathcal{Q}_{\pi} \land \forall j < i : \mathcal{O}_R^{\sf cr}(w_i) = z_i] = 1/(2^k - p - i + 1) \ge 1/2^k$$ for all i. It follows that $$\Pr[\forall (w, z) \in \mathcal{Q}_{\mathcal{O}} : \mathcal{O}_R^{\mathsf{cr}}(w) = z \mid \pi \vdash \mathcal{Q}_{\pi}] \ge 1/2^{kq},$$ and so the probability that the real world is consistent with the transcript is at least (1). This completes the proof. ## 7.3 Circular Correlation Robustness We begin by observing that the construction from the previous section is *not* circular correlation robust. (To the best of our knowledge, this gives the first explicit separation between correlation robustness and circular correlation robustness.) To see this, consider the following distinguisher D given oracle access to π and an oracle \mathcal{O} : - 1. Query $z := \mathcal{O}(x, 1)$, where x is arbitrary. - 2. Query $s := \pi^{-1}(x \oplus z)$, and set $R^* := x \oplus s$. - 3. Query $z' := \mathcal{O}(x', 0)$, for any $x' \neq x$. Output 1 iff $z' = \mathsf{MMO}^{\pi}(x' \oplus R^*)$. Note that if $\mathcal{O}(x,b) = \mathcal{O}_R^{\mathsf{ccr}}(x,b) \stackrel{\mathrm{def}}{=} \mathsf{MMO}^\pi(x \oplus R) \oplus b \cdot R$ then $$z = \pi(x \oplus R) \oplus (x \oplus R) \oplus R = \pi(x \oplus R) \oplus x.$$ Thus, $R^* = R$ and so D always outputs 1. On the other hand, if \mathcal{O} is a random function then D outputs 1 only with probability 2^{-k} . A small change to the previous construction, however, suffices to achieve circular correlation robustness. For a function $\sigma: \{0,1\}^k \to \{0,1\}^k$ that we will fix later, define $$\widehat{\mathsf{MMO}}_{\sigma}^{\pi}(x) \stackrel{\mathrm{def}}{=} \pi(\sigma(x)) \oplus \sigma(x).$$ We say σ is linear if $\sigma(x \oplus y) = \sigma(x) \oplus \sigma(y)$ for all $x, y \in \{0, 1\}^k$. We say σ is an orthomorphism [CLL+14] if it is a permutation, and the function σ' given by $\sigma'(x) \stackrel{\text{def}}{=} \sigma(x) \oplus x$ is also a permutation. **Theorem 5.** Let σ be a linear orthomorphism. If π is modeled as a random permutation then $\widehat{\mathsf{MMO}}_{\sigma}^{\pi}$ is (p,q,ρ,ε) -circular correlation robust, where $$\varepsilon = \frac{2pq}{2^{\rho}} + \frac{q^2}{2^{k+1}}.$$ *Proof.* We prove a more general result. For some function $\sigma: \{0,1\}^k \to \{0,1\}^k$ and distribution \mathcal{R} over $\{0,1\}^k$, set $$\mathbf{H}_{\infty}(\sigma(\mathcal{R}) \oplus \mathcal{R}) \stackrel{\mathrm{def}}{=} -\log \left(\max_{R^*} \Pr_{R \leftarrow \mathcal{R}}[\sigma(R) \oplus R = R^*] \right).$$ Clearly $\mathbf{H}_{\infty}(\sigma(\mathcal{R}) \oplus \mathcal{R}) \leq \mathbf{H}_{\infty}(\mathcal{R})$, with equality when σ is an orthomorphism. Assuming σ is linear permutation and fixing some distribution \mathcal{R} , we prove that the maximum advantage of a distinguisher making p queries to π/π^{-1} and q queries to its second oracle is at most $$\varepsilon = \frac{pq}{2^{\rho}} + \frac{pq}{2^{\rho'}} + \frac{q^2}{2^{k+1}},$$ where $\rho = \mathbf{H}_{\infty}(\mathcal{R})$ and $\rho' = \mathbf{H}_{\infty}(\sigma(\mathcal{R}) \oplus \mathcal{R})$. This implies the theorem. Fix a deterministic distinguisher D making queries to two oracles. The first is a random permutation on $\{0,1\}^k$ (and its inverse); the second oracle is $\mathcal{O}_R^{\sf ccr}(w,b) = \widehat{\mathsf{MMO}}_\sigma^\pi(R \oplus w) \oplus b \cdot R$ (for R sampled from \mathcal{R}) in the real world, but in the ideal world it is an independent random function from $\{0,1\}^{k+1}$ to $\{0,1\}^k$. Following the notation from Section 7.1, denote the transcript of D's interaction by $\mathcal{Q} = (\mathcal{Q}_\pi, \mathcal{Q}_\mathcal{O}, R)$. We only consider attainable transcripts from now on. We say a transcript $(\mathcal{Q}_{\pi}, \mathcal{Q}_{\mathcal{O}}, R)$ is bad if either: - (B-1) There is a query $(w, b, z) \in \mathcal{Q}_{\mathcal{O}}$ and a query of the form $(\sigma(R \oplus w), \star)$ or $(\star, \sigma(R \oplus w) \oplus bR \oplus z)$ in \mathcal{Q}_{π} . - (B-2) There are distinct (w_i, b_i, z_i) , $(w_j, b_j, z_j) \in \mathcal{Q}_{\mathcal{O}}$ such that $\sigma(w_i) \oplus b_i R \oplus z_i = \sigma(w_j) \oplus b_j R \oplus z_j$. We now bound the probabilities of these events in the ideal world, beginning with (B-1). For some fixed queries $(w, b, z) \in \mathcal{Q}_{\mathcal{O}}$ and $(x, y) \in \mathcal{Q}_{\pi}$, we have $$\Pr[\sigma(R \oplus w) = x] = \Pr[\sigma(R) = x \oplus \sigma(w)]$$ (where the probability is over choice of R), using the fact that σ is linear. Since σ is a permutation, this probability is at most $2^{-\rho}$. Similarly, $$\Pr[\sigma(R \oplus w) \oplus bR \oplus z = y] = \Pr[\sigma(R) \oplus bR = y \oplus \sigma(w) \oplus z].$$ If b = 0, this probability is at most $2^{-\rho} \le 2^{-\rho'}$ as before. If b = 1, this probability is at most $2^{-\rho'}$. Taking a union bound over all pairs of queries, we thus see that the probability of (B-1) is at most $$\frac{pq}{2^{\rho}} + \frac{pq}{2^{\rho'}} \,.$$ For (B-2), consider distinct $(w_i, b_i, z_i), (w_j, b_j, z_j) \in \mathcal{Q}_{\mathcal{O}}$. Note that even if we condition on the value of R, the values z_i, z_j are uniform and independent. Thus, $$\Pr[\sigma(w_i \oplus w_j) \oplus (b_i \oplus b_j) \cdot R = z_i \oplus z_j] = 2^{-k}.$$ Taking a union bound over all distinct pairs of queries, we see that the probability of (B-2) is at most $q^2/2^{k+1}$. Fix a good transcript $(\mathcal{Q}_{\pi}, \mathcal{Q}_{\mathcal{O}}, R)$. The probability that the ideal world is consistent with this transcript is given by (1). The probability that the real world is consistent with this transcript is $$\frac{\Pr[\forall (w,b,z) \in \mathcal{Q}_{\mathcal{O}} : \mathcal{O}_{R}^{\mathsf{ccr}}(w,b) = z \mid \pi \vdash \mathcal{Q}_{\pi}]}{(2^{k})_{v}} \cdot \Pr_{\mathcal{R}}[R].$$ We can express the numerator of the above as $$\prod_{i=1}^{q} \Pr[\mathcal{O}_{R}^{\mathsf{ccr}}(w_{i}, b_{i}) = z_{i} \mid \pi \vdash \mathcal{Q}_{\pi} \land \forall j < i : \mathcal{O}_{R}^{\mathsf{ccr}}(w_{j}, b_{j}) = z_{j}].$$ Note that $\mathcal{O}_R^{\mathsf{ccr}}(w_i, b_i) = z_i$ iff $\widehat{\mathsf{MMO}}_{\sigma}^{\pi}(R \oplus w_i) \oplus b_i R = z_i$, i.e., $\pi(\sigma(R \oplus w_i)) = \sigma(R \oplus w_i) \oplus b_i R \oplus z_i$. Since the transcript is good there is no query of the form $(\sigma(R \oplus w_i), \star)$ in \mathcal{Q}_{π} (since (B-1) does not occur), nor is $\pi(\sigma(R \oplus w_i))$ determined by the fact that $\mathcal{O}_R^{\mathsf{ccr}}(w_j, b_j) = z_j$ for all j < i (since D does not make two queries to $\mathcal{O}_R^{\mathsf{ccr}}$ with the same w_i). Similarly, there is no query of the form $(\star, \sigma(R \oplus w_i) \oplus b_i R \oplus z_i)$ in \mathcal{Q}_{π} (since (B-1) does not occur), nor is $\pi^{-1}(\sigma(R \oplus w_i) \oplus b_i R \oplus z_i)$ determined by the fact that $\mathcal{O}_R^{\mathsf{ccr}}(w_j, b_j) = z_j$ for all j < i (since (B-2) does not occur). Thus, for all i we have $$\Pr[\mathcal{O}_R^{\sf ccr}(w_i, b_i) = z_i \mid \pi \vdash \mathcal{Q}_\pi \land \forall j < i : \mathcal{O}_R^{\sf ccr}(w_j, b_j) = z_j] = 1/(2^k - p - i + 1) \ge 1/2^k.$$ It follows that $$\Pr[\forall (w,b,z) \in \mathcal{Q}_{\mathcal{O}} : \mathcal{O}_R^{\mathsf{ccr}}(w,b) = z \mid \pi \vdash \mathcal{Q}_{\pi}] \ge 1/2^{kq},$$ and so the probability that the real world is consistent with the transcript is at least (1). This completes the proof. Instantiating σ . There are various ways σ can be instantiated. Viewing $\{0,1\}^k$ as the field \mathbb{F}_{2^k} , it is easy to show that for $\alpha \neq 0,1$ the map $\sigma(x) = \alpha \cdot x$ is a linear orthomorphism. (A common choice is $\alpha = 2$.) A more efficient solution, however, is given by $\sigma(x_L || x_R) = x_R \oplus x_L || x_L$ where x_L and x_R are the left and right halves of the input, respectively. This orthomorphism has received a lot attention in the context of symmetric-key cryptography [CLL+14]. We show in Section 8 that it can be implemented using a small number of instructions on modern CPUs. ## 7.4 Tweakable (Circular) Correlation Robustness We show here a construction of a hash function that is tweakable circular correlation robust, and hence also tweakable correlation robust. (It is an interesting open question to come up with a more efficient construction satisfying the weaker notion only.) Define $$\mathsf{TMMO}^{\pi}(x,i) = \pi(\pi(x) \oplus i) \oplus \pi(x).$$ Note that TMMO^{π} can be computed using only two calls to π . **Theorem 6.** Let $p < 2^k/2$. If π is modeled as a random permutation then TMMO^{π} is $(p, q, \rho, \varepsilon)$ -tweakable circular correlation robust, where $$\varepsilon = \frac{4q(p+q)}{2^k} + \frac{5q^2}{2^{k+1}} + \frac{pq}{2^{\rho}} + \frac{q}{2^k}.$$ *Proof.* Fix a deterministic distinguisher D making queries to two oracles. The first is a random permutation on $\{0,1\}^k$ (and its inverse); in the real world, the second oracle is $\mathcal{O}_R^{\mathsf{tccr}}(w,i,b) = \mathsf{TMMO}^\pi(R \oplus w,i) \oplus b \cdot R$ (for R sampled from \mathcal{R}), but in the ideal world it is a random function from $\{0,1\}^{2k+1}$ to $\{0,1\}^k$. Following the notation from Appendix 7.1, denote the transcript of D's interaction by $\mathcal{Q} =
(\mathcal{Q}_\pi, \mathcal{Q}_\mathcal{O}, R)$. We only consider attainable transcripts. We say a transcript $(Q_{\pi}, Q_{\mathcal{O}}, R)$ is bad if: - (B-1) There is a query $(w_j, i_j, b_j, z_j) \in \mathcal{Q}_{\mathcal{O}}$ and a query of the form $(R \oplus w_j, \star)$ in \mathcal{Q}_{π} . - (B-2) There is a query $(w_j, i_j, b_j, z_j) \in \mathcal{Q}_{\mathcal{O}}$ such that $b_j R \oplus z_j = 0^k$. - (B-3) There are distinct (w_j, i_j, b_j, z_j) , $(w_\ell, i_\ell, b_\ell, z_\ell) \in \mathcal{Q}_{\mathcal{O}}$ such that $b_j R \oplus z_j = b_\ell R \oplus z_\ell$. It is immediate that the probability of (B-1) in the ideal world is at most $pq/2^{\rho}$. Since each z_j is uniform and independent of R, it is similarly easy to see that the probability of (B-2) in the ideal world is at most $q/2^k$, and the probability of (B-3) in the ideal world is at most $q^2/2^{k+1}$. Fix a good transcript $\mathcal{Q} = (\mathcal{Q}_{\pi}, \mathcal{Q}_{\mathcal{O}}, R)$. Letting $\mathcal{Q}_{\mathcal{O}} = \{(w_1, i_1, b_1, z_1), \ldots\}$ as above, define $u_j = R \oplus w_j$ for $1 \leq j \leq q$, and set $\mathcal{U} = \{u_1, \ldots, u_q\}$. Fixing some $\pi \vdash \mathcal{Q}_{\pi}$, we may define $v_j = \pi(u_j)$, $s_j = v_j \oplus i_j$, and $t_j = z_j \oplus v_j \oplus b_j R$; set $\mathcal{V} = \{v_1, \ldots, v_q\}$. Define a predicate $\mathsf{Bad}(\pi)$ on π , which is true if any of the following hold: - (C-1) For some $1 \leq j \leq q$, there is a query of the form (s_j, \star) in \mathcal{Q}_{π} , or $s_j \in \mathcal{U}$. - (C-2) For some $1 \leq j \leq q$, there is a query of the form (\star, t_j) in \mathcal{Q}_{π} , or $t_j \in \mathcal{V}$. - (C-3) There are distinct i, j, with $1 \le j < \ell \le q$, such that $s_j = s_\ell$ or $t_j = t_\ell$. We bound the probability of the above events when π is a uniform permutation, conditioned on $\pi \vdash \mathcal{Q}_{\pi}$. Consider (C-1). Fixing some index j, recall that $$s_i = v_i \oplus i_j = \pi(R \oplus w_i) \oplus i_j.$$ Since Q is good, $\pi(R \oplus w_j)$ is uniform in a set of size at least $2^k - p$ (and thus so is s_j). Therefore, $$\Pr[\exists (x,y) \in \mathcal{Q}_{\pi} : s_j = x] \le \frac{p}{2^k - p} \le \frac{2p}{2^k},$$ using $p < 2^k/2$. Similarly, $$\Pr[s_j \in \mathcal{U}] \le \frac{|\mathcal{U}|}{2^k - p} \le \frac{2q}{2^k}$$ (note that \mathcal{U} is defined independent of π). Taking a union bound over all j, we see that the probability of (C-1) is at most $2q(p+q)/2^k$. Next consider (C-2). Fixing some index j, recall that $t_j = z_j \oplus v_j \oplus b_j R = z_j \oplus \pi(R \oplus w_j) \oplus b_j R$ and so, arguing as above, we have $$\Pr[\exists (x,y) \in \mathcal{Q}_{\pi} : t_j = y] \le \frac{p}{2^k - p} < \frac{2p}{2^k}.$$ Fixing some $v_{\ell} \in \mathcal{V}$, we have $t_j = v_{\ell}$ iff $$z_i \oplus \pi(R \oplus w_i) \oplus b_i R = \pi(R \oplus w_\ell).$$ The above can only possibly occur if $j \neq \ell$ since, if not, then $z_j \oplus b_j R = 0^k$ in contradiction to (B-2). But if $j \neq \ell$ then $\pi(R \oplus w_\ell)$ is uniform in a set of size at least $2^k - p - 1$ even conditioned on the value of $\pi(R \oplus w_j)$ and thus $$\Pr[t_j = v_\ell] \le \frac{1}{2^k - p - 1} \le \frac{2}{2^k}$$ (using $p < 2^k/2$). Taking a union bound over all $v_\ell \in \mathcal{V}$ we see that the probability that $t_j \in \mathcal{V}$ is at most $2q/2^k$. Finally, taking a union bound over all j (and considering both sub-cases above) shows that the probability of (C-2) is at most $2q(p+q)/2^k$. To analyze (C-3), fix distinct j, ℓ . Then $s_j = s_\ell$ iff $\pi(R \oplus w_j) \oplus i_j = \pi(R \oplus w_\ell) \oplus i_\ell$. If $w_j = w_\ell$ then $i_j \neq i_\ell$ and so $s_j = s_\ell$ is impossible. Otherwise, $\pi(R \oplus w_j)$ is uniform in $\geq 2^k - p - 1$ values even conditioned on the value of $\pi(R \oplus w_\ell)$, and thus $$\Pr[s_j = s_\ell] \le \frac{1}{2^k - p - 1} \le \frac{2}{2^k}.$$ The event $t_j = t_\ell$ occurs iff $$z_i \oplus \pi(R \oplus w_i) \oplus b_i R = z_\ell \oplus \pi(R \oplus w_\ell) \oplus b_\ell R.$$ The above can only possibly occur if $j \neq \ell$ since, if not, then $b_j R \oplus z_j = b_\ell R \oplus z_\ell$ in contradiction to (B-3). But if $w_j \neq w_\ell$ then $\pi(R \oplus w_j)$ is uniform in a set of at least $2^k - p - 1$ values, even conditioned on $\pi(R \oplus w_\ell)$, and so $\Pr[s_j = s_\ell] \leq \frac{2}{2^k}$. Taking a union bound over all distinct j, ℓ shows that the probability of (C-3) is at most $2q^2/2^k$. In summary, we have $$\Pr[\mathsf{Bad}(\pi) \mid \pi \vdash \mathcal{Q}_{\pi}] \le \frac{4q(p+q) + 2q^2}{2^k}.\tag{2}$$ The probability that the ideal world is consistent with the good transcript Q is exactly (1). The probability that the real world is consistent with the transcript is $$\frac{\Pr[\forall (w, i, b, z) \in \mathcal{Q}_{\mathcal{O}} : \mathcal{O}_{R}^{\mathsf{tccr}}(w, i, b) = z \mid \pi \vdash \mathcal{Q}_{\pi}]}{(2^{k})_{p}} \cdot \Pr_{\mathcal{R}}[R].$$ Write $\pi \vdash_j \mathcal{Q}$ if $\pi \vdash \mathcal{Q}_{\pi}$ and $\mathcal{O}_R^{\mathsf{tccr}}(w_\ell, i_\ell, b_\ell) = z_\ell$ for all $\ell \leq j$. The numerator above is at least $$\Pr[\pi \vdash_q \mathcal{Q} \, \wedge \, \neg \mathsf{Bad}(\pi) \mid \pi \vdash \mathcal{Q}_\pi]$$ $$\geq \left(1 - \Pr[\mathsf{Bad}(\pi) \mid \pi \vdash \mathcal{Q}_{\pi}]\right)$$ $$\cdot \prod_{j=1}^{q} \Pr[\pi \vdash_{j} \mathcal{Q} \mid \neg \mathsf{Bad}(\pi) \land \pi \vdash_{j-1} \mathcal{Q}].$$ $$(3)$$ Consider any π such that $\pi \vdash \mathcal{Q}_{\pi}$ and $\neg \mathsf{Bad}(\pi)$. Note that $\mathcal{O}_R^{\mathsf{tccr}}(w_j, i_j, b_j) = z_j$ iff $\pi(s_j) = t_j$ (for s_j, t_j as defined before). If $\neg \mathsf{Bad}(\pi)$, there is no query of the form (s_j, \star) or of the form (\star, t_j) in \mathcal{Q}_{π} . Moreover, since neither (C-1) nor (C-2) occur, neither $\pi(s_j)$ nor $\pi^{-1}(t_i)$ is determined by the input/output relations $\{\pi(u_j) = v_j\}_{j=1,\ldots,q}$. Furthermore, since (C-3) does not occur, neither $\pi(s_j)$ nor $\pi^{-1}(t_j)$ is determined by the fact that $\pi \vdash_{j-i} \mathcal{Q}$ or, equivalently, the fact that $\pi(s_\ell) = t_\ell$ for all $\ell < j$. Thus, for all j we have $$\Pr[\pi \vdash_j \mathcal{Q} \mid \neg \mathsf{Bad}(\pi) \land \pi \vdash_{j-1} \mathcal{Q}] \ge 1/2^k$$ and therefore $$\Pr[\pi \vdash_q \mathcal{Q} \mid \neg \mathsf{Bad}(\pi) \land \pi \vdash \mathcal{Q}_{\pi}] \ge 1/2^{kq}.$$ It follows from (3) that the ratio of the probability that the real world is consistent with Q to the probability that the ideal world is consistent with Q is at least $$1 - \Pr[\mathsf{Bad}(\pi) \mid \pi \vdash \mathcal{Q}_{\pi}].$$ Using (2) completes the proof. ## 7.5 On the Concrete-Security Bounds Assume for simplicity that $\rho = k$. All the hash-function constrictions we analyze in the preceding sections have concrete security $O((pq+q^2)/2^k)$. For the applications we consider in this paper, q is fixed by the protocol but p reflects the number of queries the attacker makes to π/π^{-1} and is thus limited only by the attacker's running time. It is thus natural to wonder whether the $O(pq/2^k)$ term can be avoided. We argue here that this is unlikely for efficient constructions. We focus on correlation robustness for simplicity. Fix some hash function H that depends on a permutation π , and assume for concreteness that an evaluation of H requires a single evaluation of π . (The argument can be extended for the general case.) Consider an following attacker with oracle access to $\mathcal{O}_R^{\mathsf{cr}}(x) = H(R \oplus x)$: - 1. Locally evaluate H on p uniform inputs, i.e., compute $z_1^* = H(v_1^*), \ldots, z_p^* = H(v_q^*)$. Note that this requires (at most) p queries to π . - 2. Query $\mathcal{O}_R^{\mathsf{cr}}$ on q uniform inputs, i.e., obtain $z_1 = \mathcal{O}(x_1), \ldots, z_q = \mathcal{O}(x_q)$. - 3. If $z_i^* = z_j$ for some i, j, then set $R^* = v_i^* \oplus x_j$ as a candidate guess for R. This guess can be verified using one additional query to each of π and $\mathcal{O}_R^{\mathsf{cr}}$. (This is a "slide with a twist attack" [BW00] adapted to our setting.) The distinguishing advantage of this attack is $O(pq/2^k)$. ## 8 Evaluation In this section we evaluate the performance of our hash-function constructions from Section 7 both on their own as well as when they are used in various protocols. The primary goal of our work | Batch size | 1 | 2 | 4 | 8 | |----------------------------|------|------|------|------| | SHA-3 | 1375 | 1381 | 1374 | 1432 | | SHA-256 | 588 | 584 | 594 | 588 | | AES + key-sched. | 81 | 55 | 37 | 37 | | XORP | 48 | 27 | 22 | 22 | | doubling | 51 | 28 | 16 | 13.5 | | Fixed-key AES | 41 | 21 | 11 | 10 | | $\overline{MMO^{\pi}}$ | 43 | 26 | 13 | 12 | | \widehat{MMO}_σ^π | 46 | 26 | 14 | 13 | | $TMMO^\pi$ | 81 | 45 | 25 | 21 | Table 3: **Performance of symmetric-key primitives.** All values represent the amortized cost per call, measured in CPU cycles. See text for further details. is security, not efficiency. Nevertheless, we show that our work results in noticeable performance improvements over the state-of-the-art. All timing results were obtained using an Intel(R) Xeon(R) Platinum 8124M CPU running at 3.00GHz. This CPU uses a Skylake architecture with hardware support for AES, where AES-NI has a latency of 4 cycles with a throughput of 1 cycle per instruction. All tests use only a single core. The implementations evaluated here are all publicly available at EMP [WMK16]. ## 8.1 Implementing the Hash Functions Our constructions of correlation robust and tweakable (circular) correlation robust hash functions from Section 7 only involve XORs and calls to AES. Our construction of a circular correlation robust hash function from Section 7.3, however, also requires a linear
orthomorphism σ . We implement σ as described in that section using the $_{\tt mm_shuffle_epi32}$ instruction that is available since SSE2. This instruction allows for arbitrary permutations of the four 32-bit integers that comprise a 128-bit value. We can thus implement σ via $$\sigma(a) = \text{_mm_shuffle_epi32}(a, 78) \oplus \text{and_si128}(a, \text{mask}),$$ where $\mathtt{mask} = 1^{64} \| 0^{64}$ is a constant. In the CPU we used for our experiments, the $\mathtt{_{mm_shuffle_epi32}}$ instruction executes in 1 cycle, while the other two instructions need 0.33 cycles each, so our implementation of σ requires just 1.66 cycles. This is in contrast to prior instantiations of a linear orthomorphism based on finite-field doubling [BHKR13], which require 3.66 cycles on the same CPU. In Table 3 we compare the performance of our hash functions with other symmetric-key primitives. These are: - "SHA-256" (resp., "SHA-3") refers to computing SHA-256 (resp., SHA-3) on a 256-bit input. The implementations from opensal are used. - "AES + key-sched." refers to performing key scheduling for AES-128 (using optimizations of Gueron et al. [GLNP15]) followed by a single AES evaluation. - "doubling" refers to computation of the function $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i$, where π is AES-128 with a fixed key. | Protocols | Malicious | | | | Semi-honest | | | |-----------------------------|----------------|----------------|----------------|--------------|-------------|--------------|--| | | High | Med. | Low | Hig | h Med. | Low | | | S-OT (prior)
S-OT (here) | 2.03
8.50 | 1.74
2.346 | 0.49
0.49 | 9.10
9.10 | | 0.50
0.50 | | | C-OT (prior)
C-OT (here) | $2.04 \\ 9.17$ | 1.76
3.60 | $0.74 \\ 0.74$ | 3.2
10.9 | | 0.74
0.74 | | | R-OT (prior)
R-OT (here) | $3.7 \\ 12.1$ | $2.85 \\ 6.27$ | 1.13
1.43 | 3.7
14.0 | | 1.14
1.46 | | Table 4: **Performance of OT-extension protocols.** Numbers reported are in millions of OTs per second, and include 128 base OTs. - "XORP" refers to computation of $H(x) = \pi_1(x) \oplus \pi_2(x)$, where π_1, π_2 are both AES-128 with fixed keys. - "Fixed-key AES" is simply AES-128 with a fixed key. The final three rows of the table refer to the hash functions we construct in Section 7, implemented as discussed. In each case, π is instantiated using AES-128 with a fixed key. We evaluate the performance of the above primitives on different batch sizes (i.e., evaluating the primitive multiple times in parallel) to explore the benefit of instruction-level pipelining. We tested batch sizes as high as 32, but found little improvement above a batch size of 8. All numbers reported in the table are an average over 2^{25} experiments. **Discussion.** We find that $\widehat{\mathsf{MMO}}_{\sigma}^{\pi}$ is almost as efficient as MMO^{π} , while TMMO^{π} is roughly $2\times$ slower. We can also see that $\widehat{\mathsf{MMO}}_{\sigma}^{\pi}$ is roughly $3\times$ faster than nonfixed-key AES, which directly translates to a $3\times$ improvement in the applications described in Section 6. For example, an implementation of the GGM tree construction using our MMO^{π} hash function takes roughly 6 ms to expand a 128-bit seed into one million 128-bit values, while the solution based on nonfixed-key AES takes about 21 ms for the same task. Finally, TMMO^{π} is $28\times$ faster than SHA-256; as we discuss further in the next section, this leads to a significant improvement in OT-extension protocols. XORP is competitive with MMO^{π} and $\widehat{\mathsf{MMO}}_{\sigma}^{\pi}$ for low batch sizes, though is roughly twice XORP is competitive with MMO^π and MMO^π_σ for low batch sizes, though is roughly twice slower for a batch size of 8. We stress that XORP is non-compressing, and therefore does not achieve *tweakable* (circular) correlation robustness; for that reason, it should not be compared with TMMO^π . ## 8.2 OT Extension As discussed in Section 4, prior constructions of malicious OT extension either rely on a cryptographic hash function like SHA-256 (modeled as a random oracle), or are constructed from fixed-key AES in an unprincipled—and often insecure—way. We can use our hash-function constructions in place of SHA-256 to achieve provable security (if we model fixed-key AES as a random permutation) with better efficiency. (We stress that malicious OT extension requires tweakable correlation robustness, and so XORP is inapplicable here.) The actual improvement depends on the network speed. We benchmark the performance of our OT protocols in three settings: "High" with a 5 Gbps network, "Medium" with a 1 Gbps network, and "Low" with a 200 Mbps network. Results are summarized in Table 4, and are averaged over 2^{25} executions. S-OT, C-OT, and R-OT refer to standard-OT extension, correlated-OT extension, and random-OT extension, respectively. The table shows that we obtain a $3-4 \times$ improvement, except for the case of semi-honest standard-OT extension (where the existing implementation by Zahur et al. based on fixed-key AES is secure). ## References - [ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer and extensions for faster secure computation. In *ACM Conf. on Computer and Communications Security (CCS)*, pages 535–548. ACM Press, 2013. - [ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer extensions with security for malicious adversaries. In *Advances in Cryptology—Eurocrypt 2015*, Part I, volume 9056 of *LNCS*, pages 673–701. Springer, 2015. - [Bar16] Bar Ilan Cryptography Research Group. libscapi: The Secure Computation API, 2016. - [BCD⁺09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In *Financial Cryptography and Data Security (FC)*, LNCS, pages 325–343. Springer, 2009. - [BCS09] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-efficient blockcipher-based hash functions. *Journal of Cryptology*, 22(3):311–329, 2009. - [BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In *Advances in Cryptology—Eurocrypt 2015*, Part II, volume 9057 of *LNCS*, pages 337–367. Springer, 2015. - [BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a fixed-key blockcipher. In *IEEE Symposium on Security and Privacy*, pages 478–492, 2013. - [BKK⁺16] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo Talviste. Students and taxes: A privacy-preserving study using secure computation. *Proc. Privacy Enhancing Technologies*, (3):117–135, 2016. - [BN18] Srimanta Bhattacharya and Mridul Nandi. Full indifferentiable security of the xor of two or more random permutations using the χ^2 method. In Advances in Cryptology— Eurocrypt 2018, Part I, LNCS, pages 387–412. Springer, 2018. - [BW00] Alex Biryukov and David Wagner. Advanced slide attacks. In *Advances in Cryptology—Eurocrypt 2000*, volume 1807 of *LNCS*, pages 589–606. Springer, 2000. - [CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the "free-XOR" technique. In *Theory of Cryptography Conference 2012*, volume 7194 of *LNCS*, pages 39–53. Springer, 2012. - [CLL⁺14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Steinberger. Minimizing the two-round Even-Mansour cipher. In *Advances in Cryptology—Crypto 2014, Part I*, volume 8616 of *LNCS*, pages 39–56. Springer, 2014. - [CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers. In *Advances in Cryptology—Eurocrypt 2014*, volume 8441 of *LNCS*, pages 327–350. Springer, 2014. - [DHT17] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic indistinguishability via the chi-squared method. In *Advances in Cryptology—Crypto 2017, Part III*, LNCS, pages 497–523. Springer, 2017. - [DRRS09] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indifferentiability of permutation-based compression functions and tree-based modes of operation, with applications to MD6. In *Fast Software Encryption (FSE) 2009*, LNCS, pages 104–121. Springer, 2009. - [DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY A framework for efficient mixed-protocol secure two-party computation. In *Network and Distributed System Security Symposium*, 2015. - [FGK17] Xiong Fan, Chaya Ganesh, and Vladimir Kolesnikov. Hashing garbled circuits for free. In Advances in Cryptology—Eurocrypt 2017, Part III, LNCS, pages 456–485. Springer, 2017. - [FJNT15] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti. TinyLEGO: An interactive garbling scheme for maliciously secure two-party computation. Cryptology ePrint Archive, Report 2015/309, 2015. http://eprint.iacr.org/2015/309. - [GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. *J. ACM*, 33(4):792–807, October 1986. - [GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard assumptions. In *ACM Conf. on Computer and Communications Security (CCS)*, pages 567–578. ACM Press, 2015. - [HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. SoK: General purpose compilers for secure multi-party computation. In *IEEE Symposium on Security and Privacy*, 2019. - [HLOI16] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser IV. High-precision secure computation of satellite collision probabilities. In *Intl. Conf. on Security and Cryptography for Networks (SCN)*,
LNCS, pages 169–187. Springer, 2016. - [IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Advances in Cryptology—Crypto 2003, volume 2729 of LNCS, pages 145– 161. Springer, 2003. - [KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead. In *Advances in Cryptology—Crypto 2015*, Part I, volume 9215 of *LNCS*, pages 724–741. Springer, 2015. - [KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In *ACM Conf. on Computer and Communications Security (CCS)*, pages 830–842. ACM Press, 2016. - [KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications. In *Intl. Colloquium on Automata, Languages, and Programming* (ICALP), LNCS, pages 486–498. Springer, 2008. - [Lee17] J. Lee. Indifferentiability of the sum of random permutations toward optimal security. IEEE Transactions on Information Theory, pages 4050–4054, 2017. - [LJA⁺18] Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank Varia, and Azer Bestavros. Accessible privacy-preserving web-based data analysis for assessing and addressing economic inequalities. In *Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies*, COMPASS '18, pages 48:1–48:5. ACM, 2018. - [LMPW15] Atul Luykx, Bart Mennink, Bart Preneel, and Laura Winnen. Two-permutation-based hashing with binary mixing. *J. Mathematical Cryptology*, pages 139–150, 2015. - [LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. *Journal of Cryptology*, 24(3):588–613, July 2011. - [Luc00] Stefan Lucks. The sum of PRPs is a secure PRF. In Advances in Cryptology— Eurocrypt 2000, volume 1807 of LNCS, pages 470–484. Springer, 2000. - [MP15] Bart Mennink and Bart Preneel. On the XOR of multiple random permutations. In Intl. Conference on Applied Cryptography and Network Security (ACNS), LNCS, pages 619–634. Springer, 2015. - [MPN10] Avradip Mandal, Jacques Patarin, and Valérie Nachef. Indifferentiability beyond the birthday bound for the xor of two public random permutations. In *Progress in Cryptology (Indocrypt)*, LNCS, pages 69–81. Springer, 2010. - [MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In *Theory of Cryptography Conference*, volume 2951 of *LNCS*, pages 21–39. Springer, 2004. - [NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure 2PC with function-independent preprocessing using LEGO. In *Network and Distributed System Security Symposium*, 2017. - [Pat09] Jacques Patarin. The "coefficients H" technique (invited talk). In Annual International Workshop on Selected Areas in Cryptography (SAC), LNCS, pages 328–345. Springer, 2009. - [Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library. https://github.com/osu-crypto/libOTe. 41c55052627081363364370ba7f7893b3c413951. - [Unb18] Unbound Tech. Protecting cryptographic signing keys and seed secrets with multiparty computation. https://github.com/unbound-tech/blockchain-crypto-mpc, 2018. 94d5b83dc83e920a668d6e737c0a720c3abca7dc. - [Uni16a] University of Bristol. Apricot: Advanced protocols for real-world implementation of computational oblivious transfers. https://github.com/bristolcrypto/apricot, 2016. 3760dda51b0080ee0fb79c7184cbe2c00762c2b8. - [Uni16b] University of Bristol. Multiparty computation with SPDZ, MASCOT, and overdrive offline phases (inactive). https://github.com/bristolcrypto/SPDZ-2, 2016. 721ab-fae849625a02ea49aabc534f9cf41ca643f. - [WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-Party computation toolkit. https://github.com/emp-toolkit, 2016. - [ZH17] Ruiyu Zhu and Yan Huang. JIMU: Faster LEGO-based secure computation using additive homomorphic hashes. In *Advances in Cryptology—Asiacrypt 2017*, Part II, LNCS, pages 529–572. Springer, 2017. - [ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole reducing data transfer in garbled circuits using half gates. In *Advances in Cryptology—Eurocrypt 2015, Part II*, volume 9057 of *LNCS*, pages 220–250. Springer, 2015. ## A Random-OT Extension Random OT is similar to correlated OT except that both "messages" of the sender are chosen uniformly by the ideal functionality; see Figure 6. It also has applications to secure computation [ALSZ13]. In Figure 7 we show a protocol realizing this functionality in the $\mathcal{F}_{\Delta\text{-ROT}}$ -hybrid model, in both the semi-honest and malicious settings. **Theorem 7.** If H is cr (resp., tcr) then protocol Π_{R-OT} securely realizes \mathcal{F}_{R-OT} for semi-honest (resp., malicious) adversaries in the $\mathcal{F}_{\Delta-ROT}$ -hybrid model. *Proof.* The proof is very similar to the proof of Theorem 2. As in that case, security for a corrupted P_A is perfect and easy to show, and we thus focus on a corrupted P_B . We consider the malicious setting; the semi-honest setting follows similarly. The simulator ${\mathcal S}$ for a malicious ${\mathsf P}_{\mathsf B}$ is as follows: - 1-2. S obtains the inputs (x_1, \ldots, x_m) , as well as the values $\{\mathbf{b}_i\}_{i \in [m]}$, that A sends to $\mathcal{F}_{\Delta\text{-ROT}}$, S also chooses a uniform Δ and answers A's global key query (if any) using Δ . - 3. S sets $\mathbf{m}_i^{x_i} := H(\mathbf{b}_i, i)$ and sends (x_1, \dots, x_m) and $\{\mathbf{m}_i^{x_i}\}$ to $\mathcal{F}_{\mathsf{R-OT}}$. The proof of indistinguishability (for the joint distribution on the output of P_A and the view of P_B) is similar to the proof of Theorem 1. ## Functionality \mathcal{F}_{R-OT} Upon receiving (Extend) from P_A and (x_1, \ldots, x_m) from P_B with $x_i \in \{0, 1\}$ do: - 1. For each $i \in [m]$, sample uniform $\mathbf{m}_i^0, \mathbf{m}_i^1 \in \{0, 1\}^k$. - 2. If P_A is corrupted, wait for \mathcal{A} to send $\{(\mathbf{m}_i^0, \mathbf{m}_i^1)\}$. If P_B is corrupted, wait for \mathcal{A} to send $\{\mathbf{m}_i^{x_i}\}$. - 3. Send $\{(\mathbf{m}_i^0, \mathbf{m}_i^1)\}$ to P_A and $\{\mathbf{m}_i^{x_i}\}$ to P_B . Figure 6: Functionality \mathcal{F}_{R-OT} . ## Protocol Π_{R-OT} Inputs: P_B has x_1, \ldots, x_m with $x_i \in \{0, 1\}$. #### **Protocol:** - 1. P_A chooses uniform Δ and sends (Init, Δ) to $\mathcal{F}_{\Delta\text{-ROT}}$; P_B sends (Init) to $\mathcal{F}_{\Delta\text{-ROT}}$. - 2. P_B sends (x_1, \ldots, x_m) to $\mathcal{F}_{\Delta-ROT}$, which returns $\mathbf{a}_1, \ldots, \mathbf{a}_m$ to P_A and $\mathbf{b}_1, \ldots, \mathbf{b}_m$ to P_A . - 3. Semi-honest security: For $i \in [m]$ and $b \in \{0,1\}$, P_A computes $\mathbf{m}_i^b := H(\mathbf{a}_i \oplus b\Delta)$; P_B sets $\mathbf{m}_i^{x_i} := H(\mathbf{b}_i)$. Malicious security: For $i \in [m]$ and $b \in \{0,1\}$, P_{A} computes $\mathbf{m}_i^b := H(\mathbf{a}_i \oplus b\Delta, i)$; P_{B} sets $\mathbf{m}_i^{x_i} := H(\mathbf{b}_i, i)$. Figure 7: Protocol Π_{R-OT} . ## B On Defining Correlated OT We give an explicit attack showing that the protocol for correlated-OT extension by Asharov et al. [ALSZ15] does not realize their correlated-OT functionality in the malicious setting. A similar attack also works for random-OT extension. In Figure 8 we show the original correlated-OT functionality as defined by Asharov et al. [ALSZ15]. Compared to our version of the ideal functionality in Figure 4, this ideal functionality is stronger since it does not allow the adversary to specify the output it receives. In particular, a malicious P_B is no longer allowed to specify the values $\{\mathbf{m}_i^{x_i}\}$. Asharov et al. propose a protocol that is the same as ours (cf. Figure 5), and claim security when H is modeled as a random oracle. Since a malicious P_B can fully determine the values of \mathbf{b}_i , however, it can clearly choose them in such a way that each of the $\{\mathbf{m}_i^{x_i}\}$ satisfy some predicate, e.g., that the least-significant bit of $\mathbf{m}_i^{x_i}$ is equal to 0 for all i. This holds true regardless of how H is instantiated, as long as the adversary can evaluate H throughout the entire protocol. ## Functionality \mathcal{F}'_{C-OT} Upon receiving $(\Delta_1, \ldots, \Delta_m)$ from P_A and (x_1, \ldots, x_m) from P_B with $x_i \in \{0, 1\}$ do: - 1. For each $i \in [m],$ sample uniform \mathbf{m}_i^0 and set $\mathbf{m}_i^1 := \mathbf{m}_i^0 \oplus \Delta_i$. - 2. Send $\{(\mathbf{m}_i^0,\mathbf{m}_i^1)\}$ to P_A and $\{\mathbf{m}_i^{x_i}\}$ to $\mathsf{P}_\mathsf{B}.$ Figure 8: The original functionality $\mathcal{F}'_{\mathsf{C-OT}}$ for correlated OT proposed by Asharov et al. [ALSZ13, ALSZ15].