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Abstract

Many implementations of secure computation use fixed-key AES (modeled as a random per-
mutation); this results in substantial performance benefits due to existing hardware support
for AES and the ability to avoid recomputing the AES key schedule. Surveying these imple-
mentations, however, we find that most utilize AES in a heuristic fashion; in the best case this
leaves a gap in the security proof, but in many cases we show it allows for explicit attacks.

Motivated by this unsatisfactory state of affairs, we initiate a comprehensive study of how to
use fixed-key block ciphers for secure computation—in particular for OT extension and circuit
garbling—efficiently and securely. Specifically:

• We consider several notions of pseudorandomness for hash functions (e.g., correlation ro-
bustness), and show provably secure schemes for OT extension, garbling, and other appli-
cations based on hash functions satisfying these notions.

• We provide provably secure constructions, in the random-permutation model, of hash
functions satisfying the different notions of pseudorandomness we consider.

Taken together, our results provide end-to-end security proofs for implementations of secure-
computation protocols based on fixed-key block ciphers (modeled as random permutations).
Perhaps surprisingly, at the same time our work also results in noticeable performance improve-
ments over the state-of-the-art.

1 Introduction

Over the past few years, secure computation has transitioned from the realm of pure theory to the
point where it is implemented in multiple software libraries (see [HHNZ19] for a recent survey),
funded by various government agencies, marketed by many startup companies, and used in several
real-world applications [BCD+09, BKK+16, LJA+18, HLOI16] This makes it critical to understand
the security provided by implementations1 of secure-computation protocols. Indeed, although pub-
lished protocols typically come with proofs of security that can be independently verified by the
community, published protocol descriptions often omit or ignore important low-level details, and

1We stress that we are not referring to general software-security issues such as improper input handling or buffer-
overflow attacks (though these are also important). Rather, the focus of this work is on cryptographic issues that
arise in the course of implementation.
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researchers often apply performance optimizations in a haphazard way when implementing these
protocols.

In this work we study the use of fixed-key AES (or fixed-key block ciphers more generally) in
implementations of secure computation. Using fixed-key AES in this context can be traced back to
the work of Bellare et al. [BHKR13], who considered fixed-key AES for circuit garbling as part of
their JustGarble framework. Prior to that point, most implementations of garbled circuits used a
hash function such as SHA-256, modeled as a random oracle. But Bellare et al. showed that using
fixed-key AES can be up to 50× faster than using a cryptographic hash function due to hardware
support for AES provided by modern processors. (While it is also possible to garble circuits using
AES with different keys at each gate, the overhead of key scheduling—required whenever the AES
key changes—is substantial.) Bellare et al. designed several provably secure garbling schemes based
on a fixed-key block cipher, and in doing so demonstrated significant performance improvements.
Indeed, prior to their work CPU time was the main bottleneck for protocols based on circuit
garbling; after the introduction of JustGarble, network throughput became the dominant factor.
For this reason, fixed-key AES has been almost universally adopted in subsequent implementations
of garbled circuits.

Bellare et al. prove security of their constructions when the fixed-key block cipher is modeled
as a random permutation. This random-permutation model (RPM) is analogous to the random-
oracle model, and assumes that all parties have oracle access to a public, random permutation π :
{0, 1}k → {0, 1}k and its inverse. Modeling a fixed-key block cipher as a random permutation is
weaker than modeling the block cipher as an ideal cipher (which is also common); in particular,
related-key attacks are not relevant in the fixed-key setting.

Inspired by the work of Bellare et al., many subsequent works on efficient secure computation
have relied on fixed-key AES for other purposes, especially oblivious transfer (OT) extension. Un-
fortunately, however, in this case proofs of security are generally missing. Let us clarify. Typically,
published OT-extension protocols are based on a hash function H and are proven secure by mod-
eling H as a random oracle. When the protocols are implemented, however, H is not instantiated
using a cryptographic hash function but is instead instantiated haphazardly from a fixed-key block
cipher. At best this leaves a gap in the security proofs, but at worst—as we show in Section 2—it
leaves the implemented protocols vulnerable to explicit attacks.

Even the work of Bellare et al. has the drawback that it is not modular. That is, they do not
prove security of their garbling schemes based on some assumption about the “encryption scheme”
used for each gate; instead, they prove security directly in the random-permutation model. This
makes it difficult to apply their ideas to new garbling schemes that are developed, as any changes
in the scheme require re-doing the entire proof. This was done, for example, in the analysis of the
subsequent half-gates garbling scheme [ZRE15]. In their paper introducing the scheme, Zahur et al.
follow a more modular approach: they construct their garbling scheme based on a hash function H
and then prove that their scheme is secure if H satisfies a certain property that is specific to their
scheme. They also claim without proof that when H is instantiated in a particular way based on
a fixed-key cipher, then H satisfies their definition. This is a step forward, but still leaves a gap in
the overall security proof.

We believe this state of affairs is unsatisfactory. In a nutshell, the problem is that protocols
are generally analyzed by cryptographers based on a hash function H viewed as a random oracle,
but when these protocols are implemented then H is instantiated from a fixed-key block cipher in
some unprincipled (and often insecure) way. In this paper, we attempt to resolve this mismatch as
described next.
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1.1 Our Contributions

Deficiencies of current implementations. As already hinted at above, our first contribution is
merely identifying the problem. We examined all state-of-the-art platforms for secure computation2

and found that most of those using fixed-key AES were using it incorrectly; of those, many were
vulnerable to explicit attacks. We refer to Section 2 for details.

Faced with this chaotic status quo, we initiate a comprehensive study of how to securely and
efficiently use fixed-key block ciphers for secure computation. We propose a modular approach:
we first identify various properties that hash functions need to satisfy in order to prove different
protocols secure, and then show how to efficiently construct hash functions provably satisfying these
properties in the random-permutation model. In more detail:

Identifying abstract security properties. We consider several notions of pseudorandomness3

for hash functions, some that were identified in previous work (e.g., correlation robustness [IKNP03]
and circular correlation robustness [CKKZ12]) and others that are new. We then show how hash
functions realizing these different notions can be used in a provably secure way for various flavors
of OT extension (Section 4) as well as for circuit garbling (Section 5) and other applications
(Section 6).

Realizations from fixed-key block ciphers. We show provably secure constructions, in the
RPM, of hash functions meeting the notions we consider (Section 7). Importantly, in our analyses
we also provide concrete security bounds, something that is often lacking in prior work. We also
discuss how to efficiently implement our constructions utilizing existing CPU instruction sets and
pipelining (Section 8).

Taken together, our work provides end-to-end security proofs for secure-computation protocols
based on fixed-key block ciphers (in the OT-hybrid4 model). Somewhat surprisingly, at the same
time our work also results in performance improvements of up to 3–4× over the current state-of-
the-art for OT extension and various other protocols; we refer to Section 8 for further discussion.

1.2 Alternate Approaches

Recall that the problem we are addressing is that protocols are proven secure assuming access to
a random oracle H, but then implemented with H instantiated improperly from a fixed-key block
cipher. The approach we advocate, outlined in the previous section, is to prove protocols secure
using weaker assumptions on H (in particular, falsifiable assumptions) and then to provably realize
these assumptions in the random-permutation model. But one could imagine other ways of trying
to solve the problem; these are discussed briefly here.

One option is to simply instantiate H using a cryptographic hash function like SHA-256 or SHA-
3, treating those as random oracles. The drawback of this approach is that such hash functions are
at least 15–50× slower than using fixed-key AES; see Table 3.

Alternately, one could hope to instantiate H based on a fixed-key block cipher such that H
is indifferentiable [MRH04] from a random oracle. This problem has attracted a lot of atten-

2See https://github.com/rdragos/awesome-mpc.
3The properties we consider are incomparable to traditional security definitions for hash functions such as collision-

resistance; in fact, in some cases we do not even need the hash function to be compressing. Nevertheless, we use the
term “hash function” since the properties we need would traditionally be achieved using a hash function modeled as
a random oracle.

4We cannot hope to construct the “base” oblivious transfers from fixed-key block ciphers, as it is known that this
requires stronger assumptions.
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tion [Luc00, DRRS09, MPN10, MP15, DHT17, Lee17, BN18] but, as we now discuss, existing
solutions are unsatisfactory.

We are aware of only two approaches to constructing a random oracle H in the random-
permutation model: the first corresponds roughly to letting H(x) be the (k − O(k))-bit trun-
cation of π(0O(k)‖x) (where we view k as a security parameter), and the second—called the XORP
approach—defines H(x) =

⊕
i πi(x) where the {πi} represent independent random permutations.

The first approach results in a hash function whose domain and range are much shorter than the
domain/range of π, and would result in impractically poor security bounds if applied to AES with
a block length of 128 bits. The second approach can be used to construct a random oracle mapping
k-bit inputs to k-bit outputs given multiple random permutations on {0, 1}k, and thus could in
principle be used to realize some of the security definitions we consider. Drawbacks of this approach,
however, include:

• Some of our definitions require compression, and it is unknown how to obtain a compressing
random oracle that is both efficient and has acceptable concrete-security bounds starting from
a random permutation on {0, 1}k.

• The XORP approach requires two independent permutations, and two calls to those permuta-
tions; in some sense, this is inherent [BCS09, LMPW15]. The constructions we show here use
only a single random permutation (and in some cases just a single call to that permutation),
and are more efficient than XORP; we defer further discussion to Section 8.

1.3 Outline of the Paper

In Section 2 we survey existing implementations of secure-computation protocols, focusing in par-
ticular on how they instantiate the underlying hash function based on fixed-key AES. We show that
in many cases, the chosen instantiation allows for an explicit attack. Given this, we introduce in
Section 3 various security definitions for hash functions, some of which have been considered before
(e.g., correlation robustness) and some of which have not (e.g., tweakable correlation robustness).
In the following sections we explore applications of hash functions satisfying these definitions to OT
extension (Section 4), the half-gates garbling scheme (Section 5), and other protocols (Section 6).
We address in Section 7 the question of constructing hash functions satisfying the various defini-
tions from a fixed-key block cipher, when that block cipher is modeled as a random permutation.
Finally, in Section 8 we evaluate the performance of our constructions and compare them to prior
work.

2 The Current State of Affairs

As discussed in Section 1, while many of the existing platforms for secure computation rely on
fixed-key AES, very few of them utilize it properly. Here we discuss some of the problems we
found. Before making our work public, we have contacted the authors of related works to confirm
the issues that we found.

2.1 Oblivious-Transfer Extension

We begin by describing some background about OT extension for context. At a high level, state-
of-the-art OT extension protocols work in two phases:
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Platform Security goal Implementation

APRICOT [Uni16a] Malicious H(x, i) = π(x)
APRICOT [Uni16a] Semi-honest H(x, i) = π(x)

SPDZ-2 [Uni16b] Malicious H(x, i) = π(x)⊕ x
libOTe [Rin] Malicious H(x, i) = π(x)⊕ x
libOTe [Rin] Malicious H(x, i) = SHA-256(x)

Unbound Tech [Unb18] Malicious H(x, i) = π(x⊕ i)⊕ x⊕ i
EMP [WMK16] Malicious H(x, i) = π(2x⊕ i)⊕ 2x⊕ i

Table 1: Insecure instantiations of the hash function in existing implementations of OT
extension. π(·) denotes AES-128 with a fixed key.

1. A receiver with choice bits x1, ..., xm runs a protocol with a sender, after which the sender
obtains a uniform k-bit string ∆ and uniform k-bit strings (a1, . . . ,am) while the receiver
obtains k-bit strings (b1, . . . ,bm) such that ai⊕bi = xi∆. (Here, k is a security parameter.)

A malicious receiver is able to influence the randomness and thus can potentially control
the {bi}.

2. The sender, with input messages {(m0
i ,m

1
i )}mi=1, computes and sends cbi := H(ai⊕b·∆, i)⊕mb

i

to the receiver, for i = 1, . . . ,m and b ∈ {0, 1}. The receiver can “decrypt” only one value in
each tuple; namely, it can recover mxi

i := H(bi, i)⊕ cxii for all i.

Assuming the first phase is carried out securely, it can be shown that the above protocol for
OT extension is secure in both the semi-honest and malicious settings when H is a random oracle.
Ishai et al. [IKNP03] showed that in the semi-honest setting it suffices for H to be correlation
robust for random inputs (and in this case the additional input i to H is not needed). Asharov et
al. [ALSZ15] proved that the protocol is secure in the malicious setting if H is strongly correlation
robust (cf. Def. 1), i.e., even for adversarially chosen inputs.

Unfortunately, prior to our work it was not clear how to construct a (strongly) correlation
robust hash function from a fixed-key block cipher; for this reason, existing implementations made
seemingly arbitrary choices (see next and Table 1). Below we show explicit attacks on these
OT protocols, but for various reasons it may not always lead to an explicit attack on the entire
implementation. In what follows the block cipher used is always AES-128, but we write π for
consistency with the rest of the paper.

APRICOT and libscapi. APRICOT [Uni16a], which is also internally used by libscapi [Bar16],
sets H(x, i) = π(x). This is insecure, even in the semi-honest case, since this H is invertible. (In
particular, assume the receiver happens to know both m0

1 and m1
1. Then it can deduce both ai and

ai ⊕∆; hence it can recover ∆ and learn all the rest of the sender’s inputs.)
We believe that their intent was to instantiate H(x, i) = π(x) ⊕ x, which has been confirmed

by the authors of APRICOT. They also pointed out that it has been changed to so in the newer
version of SPDZ-2. As described in the next paragraph, this is, however, still insecure.

SPDZ-2, MP-SPDZ, and MASCOT. The SPDZ-2 [Uni16b] implementation, which is also used
by MP-SPDZ, sets H(x, i) = π(x) ⊕ x. This choice was justified in the MASCOT paper [KOS16]
by noting that it is inspired by the Matyas-Meyer-Oseas (MMO) construction, which can be proven
collision resistant in the ideal-cipher model. This reasoning is invalid for many reasons, not least of
which since collision resistance does not imply correlation robustness. In any case, this instantiation

5



admits a simple attack in the malicious setting that exploits the fact that H has no dependence
on i: by using x1 = x2 = 1 and forcing b1 = b2 = b, the receiver can learn m1

1,m
1
2, and also

c01 ⊕ c02 = H(b, 1)⊕H(b, 2) = m0
1 ⊕m0

2,

which is disallowed.
Note that any instantiation of H that does not depend on i admits this attack in the malicious

setting.

libOTe. libOTe [Rin] provides two options for instantiating H(x, i). The first option is identical
to the one just discussed. The second option instantiates H(x, i) = SHA-256(x). Besides the fact
that this option no longer benefits from fixed-key AES, it also suffers from the same attack just
described since there is no dependence on i.

Unbound Tech and EMP. The blockchain MPC implementation by Unbound Tech [Unb18] sets
H(x, i) = π(x⊕ i)⊕ x⊕ i. Although H now depends on i, a variant of the above attack still works
if the malicious receiver chooses b1,b2 such that b1 ⊕ 1 = b2 ⊕ 2.

EMP [WMK16] uses H(x, i) = π(2x⊕ i)⊕ 2x⊕ i, and a similar attack still applies.

The ABY framework. The ABY framework [DSZ15] also sets H(x, i) = π(x⊕ i)⊕x⊕ i, but the
above attack no longer applies since ABY targets semi-honest security. However, ABY implements
correlated-OT extension and random-OT extension rather than standard-OT extension. Existing
proofs of security for the former [ALSZ13], even in the semi-honest setting, requireH to be a random
oracle (see further discussion in Section 4); it is not hard to show that the ABY instantiation of H
is not indifferentiable from a random oracle.

2.2 Garbling

As noted in the Introduction, JustGarble [BHKR13] is a garbling scheme that is proven secure in
the random-permutation model. The proof is non-modular, however, and so it is difficult to apply
the techniques to newer garbling schemes. In analyzing their half-gates construction based on an
abstract hash function H, Zahur et al. [ZRE15] introduce a definition called “circular correlation
robustness for naturally derived keys” (see Section 5) that is specific to their scheme, overly com-
plicated, and difficult to work with. They then instantiate H as H(x, i) = π(2x⊕ i)⊕ 2x⊕ i, and
claim without proof that this satisfies their definition.5

Zhu et al. [ZH17] used a customized garbling scheme with the hash function instantiated as
H(x, i) = π(x ⊕ i) ⊕ x ⊕ i. Since the garbling scheme of Zhu et al. incorporates the free-XOR
optimization [KS08], a proof of security requires H to satisfy a notion of circular correlation
robustness [CKKZ12]. However, we show in Section 7.3 that the related hash function H(x) =
π(x)⊕ x is not circular secure (and the same applies to the hash function of Zhu et al. as well).

2.3 Other Protocols and Implementations

Although we focus primarily on OT extension and garbling in this paper, we observe that unprin-
cipled reliance on fixed-key AES has come up in other scenarios as well.

TinyLEGO. Frederiksen et al. [FJNT15] showed that the wire-authentication protocol in TinyLEGO
is secure if H : {0, 1}k → {0, 1}k is correlation robust for random inputs. In the implementation of

5It is unclear to us whether it satisfies their definition or not. Nevertheless, we believe that half-gates garbling
using their instantiation of H can be proven secure directly in the random-permutation model. That is, we do not
claim that their scheme is insecure, only that their analysis is buggy.
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TinyLEGO [NST17], they instantiated the hash function with an extra increasing counter as input,
in the form of H(x, i) = π(2x ⊕ i) ⊕ 2x ⊕ i, but there is no proof that this satisfies the required
definition.

Free hash. Fan et al. [FGK17] proposed a new way to “commit” to a garbled circuit. The proof
of security for their construction assumes that the hash function H used is not only correlation
robust but also collision resistant. Unfortunately, it is easy to see that the instantiation H(x, i) =
π(2x ⊕ i) ⊕ 2x ⊕ i they use is not collision resistant, and this leads to an explicit attack on the
binding property of their scheme.

3 Hash-Function Definitions

Here we define several notions of “pseudorandomness” for hash functions, some of which have been
considered explicitly before. Our definitions are tailored for a concrete-security treatment, but
asymptotic versions of our definitions can easily be obtained by suitable modifications. In what
follows, we let Fk,` denote the set of all functions from {0, 1}k to {0, 1}`, and write Fk for Fk,k.

Our definitions are all phrased in the strongest sense possible—specifically, they allow the
attacker to adaptively choose the inputs to its oracle—since our constructions satisfy them. For
some applications, weaker notions (such as random inputs or non-adaptive choice of inputs) may
suffice, and the definitions may be tailored appropriately for those cases.

A notable feature of our definitions is that they allow for non-uniform choice of the key R.
This is useful, for example, in analyzing schemes like half-gates garbling [ZRE15], where the least-
significant bit of R is set to 1.

Correlation robustness (cr). The notion of correlation robustness was first proposed by Ishai et
al. [IKNP03] in the context of OT extension. Roughly, the definition says that H is correlation

robust if the keyed function fR(x)
def
= H(x⊕R) is pseudorandom. In the work of Ishai et al., this was

only required to hold for random inputs x, giving a definition analogous to a weak pseudorandom
function; in other work [ALSZ15], the attacker was allowed to choose arbitrary inputs but only
in a non-adaptive manner. Here we consider the strongest notion where the attacker is free to
adaptively choose its inputs to its oracle.

Definition 1. Let H : {0, 1}k → {0, 1}k be a function, and let R be a distribution on {0, 1}k. For

R ∈ {0, 1}k, define Ocr
R(x)

def
= H(x⊕R). For a distinguisher D, define

Advcr
H,R(D)

def
=

∣∣∣∣ Pr
R←R

[
DO

cr
R(·) = 1

]
− Pr
f←Fk

[
Df(·) = 1

]∣∣∣∣ .
H is (t, q, ρ, ε)-correlation robust if for all D running in time at most t and making at most q queries
to Ocr

R(·), and all R with min-entropy at least ρ, it holds that Advcr
H,R(D) ≤ ε.

Circular correlation robustness (ccr). Choi et al. [CKKZ12] extended the notion of corre-
lation robustness to allow for a form of “circularity” needed to prove security of the free-XOR
technique [KS08] for circuit garbling. Zahur et al. [ZRE15] used a weaker (but more complex)
version of this definition, also in the context of garbling; more detail about their definition is given
in Section 5.

Definition 2. Let H : {0, 1}k → {0, 1}k be a function, and let R be a distribution on {0, 1}k. For

R ∈ {0, 1}k, define Occr
R (x, b)

def
= H(x⊕R)⊕ b ·R. For a distinguisher D, define

Advccr
H,R(D)

def
=
∣∣∣ Pr
R←R

[
DO

ccr
R (·) = 1

]
− Pr
f←Fk+1,k

[
Df(·) = 1

]∣∣∣,
7



where we require that D never queries both (x, 0) and (x, 1) for any x. We say H is (t, q, ρ, ε)-
circular correlation robust if for all D running in time at most t and making at most q queries to
Occr
R (·), and all R with min-entropy at least ρ, it holds that Advccr

H,R(D) ≤ ε.

Tweakable correlation robustness (tcr) and circular correlation robustness (tccr). By
analogy with the notion of tweakable block ciphers [LRW11], we extend the notion of (circular)
correlation robustness to also incorporate a tweak. As we discuss in Section 4, the addition of a
tweak is crucial for security of some protocols in the malicious setting.

Our definitions allow the attacker to repeat tweaks arbitrarily many times. For some applica-
tions, weaker notions (such as requiring non-repeating tweaks) may suffice, and the definitions may
be modified appropriately for those cases.

Definition 3. Let H : {0, 1}2k → {0, 1}k be a function, and let R be a distribution on {0, 1}k.

For R ∈ {0, 1}k, define Otcr
R (x, i)

def
= H(x ⊕ R, i) and Otccr

R (x, i, b)
def
= H(x ⊕ R, i) ⊕ b · R. For a

distinguisher D, define

Advtcr
H,R(D)

def
=
∣∣∣ Pr
R←R

[
DO

tcr
R (·) = 1

]
− Pr
f←F2k,k

[
Df(·) = 1

]∣∣∣
and

Advtccr
H,R(D)

def
=
∣∣∣ Pr
R←R

[
DO

tccr
R (·) = 1

]
− Pr
f←F2k+1,k

[
Df(·) = 1

]∣∣∣,
where in the latter case we require that D never queries both (x, i, 0) and (x, i, 1) for any x, i. We
say H is (t, q, ρ, ε)-tweakable correlation robust (resp., (t, q, ρ, ε)-tweakable circular correlation robust)
if for all D running in time at most t and making at most q queries to Otcr

R (·) (resp., Otccr
R (·)), and

all R with min-entropy at least ρ, it holds that Advtcr
H,R(D) ≤ ε (resp., Advtccr

H,R(D) ≤ ε).

Definitions in the random-permutation model. In this work we construct hash functions H
satisfying the above definitions in the random-permutation model. That is, we assume a public,
random permutation π : {0, 1}k → {0, 1}k and show constructions of H given oracle access to π.
The security definitions are then modified by (1) taking probabilities also over uniform choice of π
and (2) giving the distinguisher D oracle access to both π and its inverse π−1. In this case, we
can prove security of our constructions unconditionally so long as we bound the number of queries
that D makes to π/π−1 and its other oracle. Thus, e.g., we say that a construction H in the
random-permutation model is (p, q, ρ, ε)-correlation robust if for all D making at most p queries to
π/π−1 and q queries to Ocr

R , and all R with min-entropy at least ρ, it holds that Advcr
H,R(D) ≤ ε.

Relations between the definitions. It is easy to see that any H that is ccr (resp., tccr) is also
cr (resp., tcr). It is also easy to see that any H that is tcr (resp., tccr) can be used to construct a
hash function H ′ that is cr (resp., ccr).

The construction we give in Section 7.2 is cr but not ccr. We are not aware of a generic
transformation from cr (resp., ccr) to tcr (resp., tccr), however in Section 5 we show (implicitly)
that any H that is ccr can be used to construct a hash function H ′ that satisfies tccr for random
inputs and non-repeating tweaks. We show there that this weaker notion suffices for analyzing the
half-gates garbling scheme.
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Semi-honest security

Reference OT type Prior work This work

[IKNP03] Standard OT cr cr
[ALSZ13] Correlated OT random oracle cr
[ALSZ13] Random OT random oracle cr

Malicious security

[KOS15, ALSZ15] Standard OT cr∗ tcr
[ALSZ15] Correlated OT random oracle tcr
[ALSZ15] Random OT random oracle tcr

Table 2: Assumptions about H in protocols for OT extension. cr∗ refers to correlation
robustness with compression, for which no instantiation from a fixed-key cipher was known.

Functionality F∆-ROT

Initialize: Upon receiving (Init,∆) from PA with ∆ ∈ {0, 1}k, and (Init) from PB, store ∆ and ignore
subsequent Init commands.
Set up correlations: Upon receiving (x1, . . . , xm) from PB with xi ∈ {0, 1} do:

1. For each i ∈ [m], sample uniform ai,bi ∈ {0, 1}k such that ai ⊕ bi = xi ·∆.

2. If PA is corrupted, wait for A to send {ai} and recompute {bi} accordingly.

If PB is corrupted, wait for A to send {bi} and recompute {ai} accordingly.

3. Send {ai} to PA and {bi} to PB.

Global key query: If PB is corrupted then A can send a predicate P : {0, 1}k → {0, 1} to the
functionality after initialization but before sending its input. If P (∆) = 1, the functionality sends 1
to A; otherwise, the functionality aborts and notifies PA.

Figure 1: Functionality F∆-ROT.

4 Oblivious-Transfer Extension

As discussed in Section 2.1, many existing implementations of OT extension based on a fixed-key
cipher are insecure or, at best, cannot be proven secure. Part of the problem appears to be due
to the fact that some OT-extension protocols are proven secure in the random-oracle model, but
(efficient) instantiations of a random oracle from a fixed-key cipher are not known. To address this
gap, we present in this section various flavors of OT-extension protocols based on hash functions
satisfying the definitions from the previous section. In doing so, we improve on the assumptions used
in several prior works, as summarized in Table 2. Here we consider both standard-OT extension
and correlated-OT extension; we defer the case of random-OT extension to Appendix A.

Since our focus is on instantiating the hash function H used in the second phase of OT extension
(cf. the beginning of Section 2.1), we present all our protocols in the F∆-ROT-hybrid model (see
Figure 1). This ideal functionality abstracts the first phase of OT extension, and efficient protocols
realizing it are known in both the semi-honest [ALSZ13] and malicious [KOS15] settings.
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Functionality FS-OT

Upon receiving ((m0
1,m

1
1), . . . , (m0

m,m
1
m)) from PA and (x1, . . . , xm) from PB with xi ∈ {0, 1}, send

{mxi
i } to PB.

Figure 2: Functionality FS-OT for standard OT.

Protocol ΠS-OT

Inputs: PA has (m0
1,m

1
1), . . . , (m0

m,m
1
m) and PB has x1, . . . , xm with xi ∈ {0, 1}.

Protocol:

1. PA chooses uniform ∆ and sends (Init,∆) to F∆-ROT; PB sends (Init) to F∆-ROT.

2. PB sends (x1, . . . , xm) to F∆-ROT, which returns a1, . . . ,am to PA and b1, . . . ,bm to PB.

3. Semi-honest security: PA sends c0i := H(ai)⊕m0
i and c1i := H(ai ⊕∆)⊕m1

i to PB, who can
then compute mxi

i := cxi
i ⊕H(bi).

Malicious security: PA sends c0i := H(ai, i)⊕m0
i and c1i := H(ai ⊕∆, i)⊕m1

i to PB, who can
then compute mxi

i := cxi
i ⊕H(bi, i).

Figure 3: Protocol ΠS-OT in the F∆-ROT-hybrid model.

4.1 Standard-OT Extension

Figure 2 describes the standard OT functionality FS-OT. In Figure 3 we show a protocol realizing
standard OT in the F∆-ROT-hybrid model, in both the semi-honest and malicious settings. We
remark that the result for the case of semi-honest security already follows from the work of Ishai et
al. [IKNP03].

Theorem 1 (Informal). If H is cr (resp., tcr) then protocol ΠS-OT securely realizes FS-OT for
semi-honest (resp., malicious) adversaries in the F∆-ROT-hybrid model.

The theorem is somewhat informal since, e.g., we have not defined what it means for H to be
cr but only what it means for it to be (t, q, ρ, ε)-cr. A formal statement incorporating concrete
security bounds can be obtained from the proof.

Proof. Security in the F∆-ROT-hybrid model for a corrupted PA, whether semi-honest or malicious,
holds perfectly and is trivial to show. We therefore focus on the case of an adversary A corrupt-
ing PB.

The case of a semi-honest PB is straightforward. (As noted earlier, this is also implicit in [IKNP03].)
The simulator in this case extracts PB’s inputs from its input to the F∆-ROT functionality, sends
these to the FS-OT functionality to obtain {mxi

i }, and then for all i sets cxii := H(bi) ⊕mxi
i and

chooses uniform c1−xii . It is immediate that correlation robustness of H implies that this results in
a view for PB that is indistinguishable from its view in a real execution.

In the malicious case the simulator is almost the same as before, but the proof is more involved.
For completeness, we describe the simulator S in full:

1–2. S obtains the inputs (x1, . . . , xm), along with the values {bi}i∈[m], that A sends to F∆-ROT.

S sends (x1, . . . , xm) to FS-OT, which returns (mx0
0 , . . . ,m

xm
m ).

S chooses a uniform ∆ and answers A’s global key query (if any) using ∆.
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Functionality FC-OT

Upon receiving (∆1, . . . ,∆m) from PA and (x1, . . . , xm) from PB with xi ∈ {0, 1} do:

1. For each i ∈ [m], sample uniform m0
i ∈ {0, 1}

k
and set m1

i := m0
i ⊕∆i.

2. If PA is corrupted, wait for A to send {m0
i } and recompute {m1

i } accordingly.

If PB is corrupted, wait for A to send {mxi
i } and recompute {m1−xi

i } accordingly.

3. Send {m0
i } to PA and {mxi

i } to PB.

Figure 4: Functionality FC-OT for correlated OT.

Protocol ΠC-OT

Inputs: PA has ∆1, . . . ,∆m ∈ {0, 1}k and PB has x1, . . . , xm with xi ∈ {0, 1}.

Protocol:

1. PA chooses uniform ∆ and sends (Init,∆) to F∆-ROT; PB sends (Init) to F∆-ROT.

2. PB sends (x1, . . . , xm) to F∆-ROT, which returns a1, . . . ,am to PA and b1, . . . ,bm to PB.

3. Semi-honest security: PA computes m0
i := H(ai) and sends ci := H(ai)⊕H(ai ⊕∆)⊕∆i to

PB, who can then compute mxi
i := H(bi)⊕ xici.

Malicious security: PA computes m0
i := H(ai, i) and sends ci := H(ai, i)⊕H(ai ⊕∆, i)⊕∆i

to PB, who can then compute mxi
i := H(bi, i)⊕ xici.

Figure 5: Protocol ΠC-OT in the F∆-ROT-hybrid model.

3. For all i, S sets cxii := H(bi, i)⊕mxi
i and chooses uniform c1−xii . It sends the {cbi} to PB.

If A makes no global key query then it is immediate that if H is (t,m, k, ε)-tweakable correlation
robust then for any A running in time at most t the advantage of A in distinguishing the simulated
view from the real view is at most ε + 2−k (with the second term accounting for the probability
that ∆ = 0k).

Assume that for all 0 ≤ ρ ≤ k it holds that H is (t,m, ρ, ε(ρ))-tweakable correlation robust. Say
the global key query P of A is such that |{∆ : P (∆) = 1}| = 2ρ. Then with probability 2ρ−k the
attacker reduces the min-entropy of ∆ to ρ, but with the remaining probability the functionality
aborts. The maximum distinguishing advantage of A is thus maxρ{2ρ−k · ε(ρ)}+ 2−k.

4.2 Correlated OT

Correlated OT, proposed by Asharov et al. [ALSZ13], is a weaker form of OT in which the sender can
only specify the XOR of its “messages” (which are otherwise chosen uniformly by the functionality);
the relevant ideal functionality FC-OT is given in Figure 4. Prior work showing correlated-OT
extension protocols [ALSZ13, ALSZ15] requires a programmable random oracle, even for semi-
honest security, because the simulator needs to program the output of H to ensure consistency
with the output from the ideal functionality. In fact, it appears difficult to efficiently realize the
ideal functionality as defined by Asharov et al. without a programmable random oracle, and for this
reason we weaken the ideal functionality to allow the adversary to choose its output. (Interestingly,
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we observe that prior work [ALSZ15] does not actually realize the ideal functionality of Asharov et
al. [ALSZ13] but instead also realizes the weaker version we define here. See Appendix B for more
details.) This ideal functionality still suffices for applications to secure computation. In Figure 5
we show a protocol that realizes this functionality in both the semi-honest and malicious settings.

Theorem 2 (Informal). If H is cr (resp., tcr) then protocol ΠC-OT securely realizes FC-OT for
semi-honest (resp., malicious) adversaries in the F∆-ROT-hybrid model.

The comment following Theorem 1 applies here as well.

Proof. As in the case of Theorem 1, security for an adversary A corrupting PA is perfect and easy
to show. We thus focus on the case of a corrupted PB. We consider the malicious setting; the
semi-honest setting follows similarly.

The simulator S for a malicious PB is as follows:

1–2. S obtains the inputs (x1, . . . , xm), as well as the values {bi}i∈[m], that A sends to F∆-ROT.

S also chooses a uniform ∆ and answers A’s global key query (if any) using ∆.

3. S chooses uniform {ci} and sends them to PB. It sets mxi
i := H(bi, i) ⊕ xici and sends

(x1, . . . , xm) and {mxi
i } to FC-OT.

The proof of indistinguishability (for the joint distribution on the output of PA and the view of PB)
is similar to the proof of Theorem 1.

5 Revisiting the Half-Gates Garbling Scheme

Zahur et al. [ZRE15] introduced the half-gates garbling scheme based on an abstract hash func-
tion H. To analyze the scheme, Zahur et al. introduce a definition called “circular correlation ro-
bustness for naturally derived keys,” and prove security for their garbling scheme when H satisfies
that definition. They then claim, without proof, that the hash function H(x, i) = π(2x⊕ i)⊕2x⊕ i
satisfies their definition. It is not clear to us that this is the case (but see footnote 5). In particular,
a distinguisher D can generate a set X containing t random xi’s and check if there exist i 6= j ≤ q
and a X ′ ⊂ X , such that |X ′| > 1 and

⊕
v∈X ′ 2v = i ⊕ j. If so, D can partition X ′ into X ′1 and

X ′2, and make oracle queries O(
⊕

v∈X ′1
2v, i, 0) and O(

⊕
v∈X ′2

2v, j, 1). The XOR of them is R in

the real world. The desired bound for their construction is O((tq+ q2)/2k), but the above happens
with probability roughly 2tq2/2k where D needs to check all 2t subsets of X ; we can easily modify
it to obtain a D with running time t and distinguishing probability at least tq2/2k.

In this section, we revisit the assumption needed to prove security of the half-gates garbling
scheme. (Everything we say here applies to the privacy-free version of the scheme as well.) We
weaken the definition of circular correlation robustness to match exactly what is needed for the
security proof of Zahur et al., and then show how to achieve the definition based on the notions
introduced in Section 3.

The notion of “circular correlation robustness for naturally derived keys” can be viewed as a
form of tweakable circular correlation robustness where the attacker does not have full control over
the queries made to the oracle Otccr

R (cf. Def. 3). We proceed to give the details. Let H : {0, 1}2k →
{0, 1}k be a function, and let R be a distribution on {0, 1}k. We say a sequence of operations
Q = (Q1, . . . , Qq) is natural if each Qi is one of the following:

1. xi ← {0, 1}k.
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2. xi := xi1 ⊕ xi2 , where i1 < i2 < i.

3. xi := H(xi1 , i), where i1 < i.

4. xi := O(xi1 , i, b), where i1 < i.

Fix some natural sequence Q of length q. In the real-world experiment, denoted RealH,Q,R, a key
R is sampled from R and then the oracle O in step 4, above, is set to Otccr

R . In the ideal-world
experiment, denoted IdealQ, the oracle O is instead a function chosen uniformly from F2k+1,k.
Either experiment defines a distribution (determined by executing the operations in Q in order)
over values x1, . . . , xq, which are output by the experiment.

Definition 4. For H,Q,R as above and a distinguisher D, define Advccrnd
H,Q,R(D) as∣∣∣ Pr

{xi}←RealH,Q,R

[
D({xi}) = 1

]
− Pr
{xi}←IdealQ

[
D({xi}) = 1

]∣∣∣.
We say H is (t, q, ρ, ε)-circular correlation robust for naturally derived keys if for all D running in time
at most t, all Q of length q, and all R with min-entropy at least ρ, it holds that Advccrnd

H,Q,R(D) ≤ ε.

It is immediate that a tccr hash function satisfies the above definition. But this is overkill, and
we show now that a family of hash functions satisfying the notion can be constructed from any H
that is ccr. Specifically, we show that the keyed function H ′S(x, i) = H(S ⊕ x ⊕ i) satisfies the
above definition when S is uniform. (We stress, however, that S is considered public and so in
particular is also given to D.) Note that in the context of the half-gates scheme, the circuit garbler
would choose S and send it (along with the garbled circuit) to the evaluator.

Theorem 3. Let H be (t, q, ρ, ε)-ccr. Then H ′S as defined above is (t, q, ρ, ε′)-circular correlation
robust for naturally derived keys (where the probabilities are also taken over choice of S) with
ε′ = 2ε+ q2/2k+1.

Proof. Define HS(x) = H(S ⊕ x), so that H ′S(x, i) = HS(x ⊕ i). Fix some sequence Q =
{Q1, . . . , Qq}. Consider the random variables x1, . . . , xq that are defined during the course of exper-
iment RealH′,Q,R, and let Coll denote the event that there exist distinct i1, i2 with xi1⊕i1 = xi2⊕i2.

To bound the probability of Coll, note that all queries to HS throughout the course of the ex-
periment (which can occur either as “type 3” or “type 4” operations) are determined independently
of S. Consider a modified experiment Real∗Q,R in which HS is replaced with a function f chosen
uniformly from Fk. Viewing S as the key, and using the fact that H is correlation robust, we must
have ∣∣∣∣∣ Pr

RealH′,Q,R
[Coll]− Pr

Real∗Q,R
[Coll]

∣∣∣∣∣ ≤ ε.
Each operation Qi in Real∗Q,R is one of the following:

1. xi ← {0, 1}k.

2. xi := xi1 ⊕ xi2 , where i1 < i2 < i.

3. xi := f(xi1 ⊕ i), where i1 < i.

4. xi := f(R⊕ xi1 ⊕ i)⊕ bR, where i1 < i.
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Fix some distinct i1, i2. We have

xi1 ⊕ xi2
=

⊕
i∈I

xi ⊕
⊕
j∈J

f(xj ⊕ ij)⊕
⊕
k∈K

f(R⊕ xk ⊕ ik)⊕ bR,

for some sets I,J ,K ⊂ [q] and b ∈ {0, 1}. Note that Coll occurs iff xi1 ⊕ xi2 = i1⊕ i2. If the above
expression is syntactically 0 (i.e., I = J = K = ∅ and b = 0), then Coll cannot occur. If that is not
the case, then at least one of I,J ,K must be nonempty (note that b = 1 implies that K 6= ∅). But
then the probability that xi1 ⊕ xi2 = i1 ⊕ i2 is at most 2−k. So, by a union bound, we find that
the probability of Coll in Real∗Q,R is at most q2/2k+1. Hence the probability of Coll in RealH′,Q,R is

at most q2/2k+1 + ε.
Conditioned on that event that Coll does not occur in RealH′,Q,R, no two queries to H(R ⊕ ·)

as part of evaluating a “type 4” operation O(xi, i, b) = H(R⊕ (S ⊕ xi ⊕ i))⊕ bR ever repeat, and
thus we can construct from D a legal distinguisher against H in the sense of circular correlation
robustness. Viewing R as the key, this implies that the distinguishing advantage of D is at most

Pr
RealH′,Q,R

[Coll] + ε.

This completes the proof.

6 Other Applications of Correlation Robustness

Here we describe two other applications of correlation robust hash functions to secure distributed
computing. Our discussion here is brief only because the improvements, once described, are imme-
diate. We defer discussion about concrete performance improvements to Section 8, where we show
a 3× improvement for both applications.

6.1 Length Extension for OT

A well-known technique for performing OT of long messages is to first carry out OT for (short)
keys, and then to encrypt each message with the corresponding key. Thus, at a high level, we need
to encrypt each of ` messages m1, . . . ,m` with the corresponding key from among k1, . . . , k`. While
this can of course be done using a block cipher, the natural approach to doing so would involve
keying the cipher with each of the ` keys, thus imposing the cost of ` key-scheduling operations.
We observe that it is possible to do better using a correlation robust hash function H.

Let mi = m1
i , . . . ,m

t
i, where each block mj

i is k bits long. Then the encryption c1i , . . . , c
t
i of each

message mi can be done by setting

cji = H(j ⊕ ki)⊕mj
i .

(We do not need randomized encryption here since each key is used to encrypt just one message.)
Security follows directly from correlation robustness of H.

6.2 The GGM Tree and Distributed Point Functions

The GGM tree construction [GGM86] involves a binary tree in which the label of a node is used
to derive the label of its children using a length-double pseudorandom generator (PRG) G. If
G is instantiated using AES in counter mode, then deriving the labels for a leaf of the tree will
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require multiple key-scheduling operations. We observe that G can instead be instantiated using a
correlation robust hash via

G(k) = H(1⊕ k) ‖H(2⊕ k).

One recent application of the GGM tree is to the construction of distributed point func-
tions [BGI15], which have in turn found application in secure-computation protocols.

7 Instantiating Hash Functions in the RPM

In this section, we show constructions of hash functions based on a random permutation π that
satisfy the definitions from Section 3. Our proofs all rely on the H-coefficient technique, which we
review in Section 7.1.

7.1 The H-Coefficient Technique

We briefly recall the H-coefficient technique [Pat09, CS14], specialized for our proofs in the following
three sections. In all cases we consider a deterministic distinguisher D given access to two oracles.
The first oracle is always a random permutation π on {0, 1}k (and its inverse). The second oracle
O can take two forms: in the real world it is a function that depends on a key R sampled from
a distribution R, while in the ideal world it is a random function with range {0, 1}k. We are
interested in bounding the maximum difference between the probabilities that D outputs 1 in the
real world vs. the ideal world, where the maximum is taken over all D making p queries to its first
oracle and q queries to its second oracle.

We define a transcript of D’s interaction by

Q = (Qπ,QO, R),

where Qπ = {(x1, y1), . . .} records D’s queries/answers to/from π or π−1 (with (x, y) ∈ Qπ meaning
π(x) = y, regardless of whether the query was to π or π−1) and QO = {(w1, z1), . . .} records D’s
queries/answers to/from the second oracle. A key R is appended to the transcript as well (even
though it is not part of the view of D) to facilitate the analysis: in the real world, this is the key
used by the second oracle, whereas in the ideal world it is simply an independent key sampled
from R. A transcript Q is attainable for some fixed D if there exist some oracles such that the
interaction of D with those oracles would lead to transcript Q.

Fix some D. Let T denote the set of attainable transcripts, and let Prreal[·] and Prideal[·] denote
the probabilities of events in the real and ideal worlds, respectively. The H-coefficient technique
involves defining a partition of T into a “bad” set Tbad and a “good” set Tgood = T \Tbad, and then
showing that

Prideal[Q ∈ Tbad] ≤ ε1
and

∀Q ∈ Tgood :
Prreal[Q]

Prideal[Q]
≥ 1− ε2.

It is then possible to show that the distinguishing advantage of D is at most ε1 + ε2.
One key insight of the H-coefficient technique is that the ratio Prreal[Q]/Prideal[Q] is equal

to the ratio between the probability that the real-world oracles are consistent with Q and the
probability that the ideal-world oracles are consistent with Q. Now, for any attainable transcript
Q = (Qπ,QO, R), the probability that the ideal world is consistent with Q is always exactly

PrR[R]

(2k)p · 2kq
, (1)
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where for integers 1 ≤ b ≤ a, we set

(a)b = a · (a− 1) · · · (a− b+ 1)

with (a)0 = 1 by convention. This is so since the probability that a random permutation on {0, 1}k
is consistent with the p queries in Qπ is exactly 1/(2k)p; the probability that a random function

with range {0, 1}k is consistent with the q queries to QO is exactly 1/2kq; and the probability
that the key is R is exactly PrR[R]. Bounding the distinguishing advantage of D thus reduces to
bounding the probability that the real world is consistent with transcripts Q ∈ Tgood.

Let π ` Qπ denote the event that permutation π is consistent with the queries/answers in Qπ,
i.e., that π(x) = y for all (x, y) ∈ Qπ. Since, in the real world, the behavior of the second
oracle is completely determined by π and R, we can also write (π,R) ` QO to denote the event
that permutation π and key R are consistent with the queries/answers in QO. For a (good)
transcript Q = (Qπ,QO, R), the probability that the real world is consistent with Q is exactly

Pr[(π,R) ` QO | π ` Qπ] · Pr[π ` Qπ] · PrR[R]

(using independence of R and π). We have Pr[π ` Qπ] = 1/(2k)p exactly as before. The crux of
the proof thus reduces to bounding Pr[(π,R) ` QO | π ` Qπ]. We can equivalently write this as
Pr[∀(w, z) ∈ QO : OπR(w) = z | π ` Qπ].

7.2 Correlation Robustness

We begin by showing a construction that achieves correlation robustness. We refer to the resulting
hash function as MMO since it is reminiscent of (though not identical to) the Matyas-Meyer-Oseas
construction. Namely, we define

MMOπ(x)
def
= π(x)⊕ x.

Theorem 4. If π is modeled as a random permutation then MMOπ is (p, q, ρ, ε)-correlation robust,
where

ε =
2pq

2ρ
+

q2

2k+1
.

Proof. We consider a deterministic distinguisher D making queries to two oracles. The first is
a random permutation π on {0, 1}k (and its inverse); in the real world, the second oracle is
Ocr
R(·) = MMOπ(R ⊕ ·) (for R sampled from a distribution R), and in the ideal world it is an

independent random function from {0, 1}k to {0, 1}k. As in Section 7.1, we denote the transcript
of D’s interaction by Q = (Qπ,QO, R). We only consider attainable transcripts from now on.

We say a transcript Q = (Qπ,QO, R) is bad if either:

• (B-1) There is a query (w, z) ∈ QO and a query of the form (R ⊕ w, ?) or of the form
(?,R⊕ w ⊕ z) in Qπ.

• (B-2) There exist distinct queries (wi, zi), (wj , zj) ∈ QO such that wi ⊕ zi = wj ⊕ zj .

In the ideal world, for some fixed queries (w, z) ∈ QO and (x, y) ∈ Qπ, we have

Pr[R⊕ w = x] = Pr[R = w ⊕ x] ≤ 1

2ρ
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as R has min-entropy ρ. Thus the probability of (B-1) is at most 2pq ·2−ρ. Similarly, the probability
of (B-2) is

Pr[∃i 6= j : wi ⊕ zi = wj ⊕ zj ] =

(
q

2

)
· 1

2k
≤ q2/2k+1

since both zi and zj are random.
Fix a good transcript Q = (Qπ,QO, R). The probability that the ideal world is consistent with

Q is exactly (1). The probability that the real world is consistent with Q is

Pr[∀(w, z) ∈ QO : Ocr
R(w) = z | π ` Qπ]

(2k)p
· PrR[R].

We can express the numerator above as

q∏
i=1

Pr[Ocr
R(wi) = zi | π ` Qπ ∧ ∀j < i : Ocr

R(wj) = zj ].

Fix some i. Note that Ocr
R(wi) = zi iff MMOπ(R⊕wi) = zi, i.e., π(R⊕wi) = R⊕wi⊕zi. Moreover,

since the transcript is good there is no query of the form (R ⊕ wi, ?) in Qπ (since (B-1) does not
occur), nor is π(R⊕wi) determined by the fact that Ocr

R(wj) = zj for all j < i (since all queries to
Ocr
R are distinct). Similarly, there is no query of the form (?,R ⊕ wi ⊕ zi) in Qπ (since (B-1) does

not occur), nor is π−1(R ⊕ wi ⊕ zi) determined by the fact that Ocr
R(wj) = zj for all j < i (since

(B-2) does not occur). Thus, we have

Pr[Ocr
R(wi) = zi | π ` Qπ ∧ ∀j < i : Ocr

R(wj) = zj ] = 1/(2k − p− i+ 1) ≥ 1/2k

for all i. It follows that

Pr[∀(w, z) ∈ QO : Ocr
R(w) = z | π ` Qπ] ≥ 1/2kq,

and so the probability that the real world is consistent with the transcript is at least (1). This
completes the proof.

7.3 Circular Correlation Robustness

We begin by observing that the construction from the previous section is not circular correlation
robust. (To the best of our knowledge, this gives the first explicit separation between correlation
robustness and circular correlation robustness.) To see this, consider the following distinguisher D
given oracle access to π and an oracle O:

1. Query z := O(x, 1), where x is arbitrary.

2. Query s := π−1(x⊕ z), and set R∗ := x⊕ s.

3. Query z′ := O(x′, 0), for any x′ 6= x. Output 1 iff z′ = MMOπ(x′ ⊕R∗).

Note that if O(x, b) = Occr
R (x, b)

def
= MMOπ(x⊕R)⊕ b ·R then

z = π(x⊕R)⊕ (x⊕R)⊕R = π(x⊕R)⊕ x.

Thus, R∗ = R and so D always outputs 1. On the other hand, if O is a random function then D
outputs 1 only with probability 2−k.
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A small change to the previous construction, however, suffices to achieve circular correlation
robustness. For a function σ : {0, 1}k → {0, 1}k that we will fix later, define

M̂MO
π

σ(x)
def
= π(σ(x))⊕ σ(x).

We say σ is linear if σ(x ⊕ y) = σ(x) ⊕ σ(y) for all x, y ∈ {0, 1}k. We say σ is an orthomor-

phism [CLL+14] if it is a permutation, and the function σ′ given by σ′(x)
def
= σ(x) ⊕ x is also a

permutation.

Theorem 5. Let σ be a linear orthomorphism. If π is modeled as a random permutation then

M̂MO
π

σ is (p, q, ρ, ε)-circular correlation robust, where

ε =
2pq

2ρ
+

q2

2k+1
.

Proof. We prove a more general result. For some function σ : {0, 1}k → {0, 1}k and distribution R
over {0, 1}k, set

H∞(σ(R)⊕R)
def
= − log

(
max
R∗

Pr
R←R

[σ(R)⊕R = R∗]

)
.

Clearly H∞(σ(R) ⊕ R) ≤ H∞(R), with equality when σ is an orthomorphism. Assuming σ is
linear permutation and fixing some distribution R, we prove that the maximum advantage of a
distinguisher making p queries to π/π−1 and q queries to its second oracle is at most

ε =
pq

2ρ
+
pq

2ρ′
+

q2

2k+1
,

where ρ = H∞(R) and ρ′ = H∞(σ(R)⊕R). This implies the theorem.
Fix a deterministic distinguisher D making queries to two oracles. The first is a random

permutation on {0, 1}k (and its inverse); the second oracle is Occr
R (w, b) = M̂MO

π

σ(R⊕w)⊕b ·R (for
R sampled from R) in the real world, but in the ideal world it is an independent random function
from {0, 1}k+1 to {0, 1}k. Following the notation from Section 7.1, denote the transcript of D’s
interaction by Q = (Qπ,QO, R). We only consider attainable transcripts from now on.

We say a transcript (Qπ,QO, R) is bad if either:

• (B-1) There is a query (w, b, z) ∈ QO and a query of the form (σ(R⊕w), ?) or (?, σ(R⊕w)⊕
bR⊕ z) in Qπ.

• (B-2) There are distinct (wi, bi, zi), (wj , bj , zj) ∈ QO such that σ(wi) ⊕ biR ⊕ zi = σ(wj) ⊕
bjR⊕ zj .

We now bound the probabilities of these events in the ideal world, beginning with (B-1). For some
fixed queries (w, b, z) ∈ QO and (x, y) ∈ Qπ, we have

Pr[σ(R⊕ w) = x] = Pr[σ(R) = x⊕ σ(w)]

(where the probability is over choice of R), using the fact that σ is linear. Since σ is a permutation,
this probability is at most 2−ρ. Similarly,

Pr[σ(R⊕ w)⊕ bR⊕ z = y] = Pr[σ(R)⊕ bR = y ⊕ σ(w)⊕ z].
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If b = 0, this probability is at most 2−ρ ≤ 2−ρ
′

as before. If b = 1, this probability is at most 2−ρ
′
.

Taking a union bound over all pairs of queries, we thus see that the probability of (B-1) is at most

pq

2ρ
+
pq

2ρ′
.

For (B-2), consider distinct (wi, bi, zi), (wj , bj , zj) ∈ QO. Note that even if we condition on the
value of R, the values zi, zj are uniform and independent. Thus,

Pr[σ(wi ⊕ wj)⊕ (bi ⊕ bj) ·R = zi ⊕ zj ] = 2−k.

Taking a union bound over all distinct pairs of queries, we see that the probability of (B-2) is at
most q2/2k+1.

Fix a good transcript (Qπ,QO, R). The probability that the ideal world is consistent with this
transcript is given by (1). The probability that the real world is consistent with this transcript is

Pr[∀(w, b, z) ∈ QO : Occr
R (w, b) = z | π ` Qπ]

(2k)p
· PrR[R].

We can express the numerator of the above as

q∏
i=1

Pr[Occr
R (wi, bi) = zi | π ` Qπ ∧ ∀j < i : Occr

R (wj , bj) = zj ].

Note that Occr
R (wi, bi) = zi iff M̂MO

π

σ(R⊕wi)⊕ biR = zi, i.e., π(σ(R⊕wi)) = σ(R⊕wi)⊕ biR⊕ zi.
Since the transcript is good there is no query of the form (σ(R ⊕ wi), ?) in Qπ (since (B-1) does
not occur), nor is π(σ(R ⊕ wi)) determined by the fact that Occr

R (wj , bj) = zj for all j < i (since
D does not make two queries to Occr

R with the same wi). Similarly, there is no query of the form
(?, σ(R ⊕ wi) ⊕ biR ⊕ zi) in Qπ (since (B-1) does not occur), nor is π−1(σ(R ⊕ wi) ⊕ biR ⊕ zi)
determined by the fact that Occr

R (wj , bj) = zj for all j < i (since (B-2) does not occur). Thus, for
all i we have

Pr[Occr
R (wi, bi) = zi | π ` Qπ ∧ ∀j < i : Occr

R (wj , bj) = zj ] = 1/(2k − p− i+ 1) ≥ 1/2k.

It follows that
Pr[∀(w, b, z) ∈ QO : Occr

R (w, b) = z | π ` Qπ] ≥ 1/2kq,

and so the probability that the real world is consistent with the transcript is at least (1). This
completes the proof.

Instantiating σ. There are various ways σ can be instantiated. Viewing {0, 1}k as the field F2k ,
it is easy to show that for α 6= 0, 1 the map σ(x) = α · x is a linear orthomorphism. (A common
choice is α = 2.) A more efficient solution, however, is given by σ(xL‖xR) = xR ⊕ xL‖xL where xL
and xR are the left and right halves of the input, respectively. This orthomorphism has received a
lot attention in the context of symmetric-key cryptography [CLL+14]. We show in Section 8 that
it can be implemented using a small number of instructions on modern CPUs.
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7.4 Tweakable (Circular) Correlation Robustness

We show here a construction of a hash function that is tweakable circular correlation robust, and
hence also tweakable correlation robust. (It is an interesting open question to come up with a more
efficient construction satisfying the weaker notion only.) Define

TMMOπ(x, i) = π(π(x)⊕ i)⊕ π(x).

Note that TMMOπ can be computed using only two calls to π.

Theorem 6. Let p < 2k/2. If π is modeled as a random permutation then TMMOπ is (p, q, ρ, ε)-
tweakable circular correlation robust, where

ε =
4q(p+ q)

2k
+

5q2

2k+1
+
pq

2ρ
+

q

2k
.

Proof. Fix a deterministic distinguisher D making queries to two oracles. The first is a random
permutation on {0, 1}k (and its inverse); in the real world, the second oracle is Otccr

R (w, i, b) =
TMMOπ(R ⊕ w, i) ⊕ b · R (for R sampled from R), but in the ideal world it is a random function
from {0, 1}2k+1 to {0, 1}k. Following the notation from Appendix 7.1, denote the transcript of D’s
interaction by Q = (Qπ,QO, R). We only consider attainable transcripts.

We say a transcript (Qπ,QO, R) is bad if:

• (B-1) There is a query (wj , ij , bj , zj) ∈ QO and a query of the form (R⊕ wj , ?) in Qπ.

• (B-2) There is a query (wj , ij , bj , zj) ∈ QO such that bjR⊕ zj = 0k.

• (B-3) There are distinct (wj , ij , bj , zj), (w`, i`, b`, z`) ∈ QO such that bjR⊕ zj = b`R⊕ z`.

It is immediate that the probability of (B-1) in the ideal world is at most pq/2ρ. Since each zj is
uniform and independent of R, it is similarly easy to see that the probability of (B-2) in the ideal
world is at most q/2k, and the probability of (B-3) in the ideal world is at most q2/2k+1.

Fix a good transcript Q = (Qπ,QO, R). Letting QO = {(w1, i1, b1, z1), . . .} as above, define
uj = R ⊕ wj for 1 ≤ j ≤ q, and set U = {u1, . . . , uq}. Fixing some π ` Qπ, we may define
vj = π(uj), sj = vj ⊕ ij , and tj = zj ⊕ vj ⊕ bjR; set V = {v1, . . . , vq}. Define a predicate Bad(π) on
π, which is true if any of the following hold:

• (C-1) For some 1 ≤ j ≤ q, there is a query of the form (sj , ?) in Qπ, or sj ∈ U .

• (C-2) For some 1 ≤ j ≤ q, there is a query of the form (?, tj) in Qπ, or tj ∈ V.

• (C-3) There are distinct i, j, with 1 ≤ j < ` ≤ q, such that sj = s` or tj = t`.

We bound the probability of the above events when π is a uniform permutation, conditioned on
π ` Qπ.

Consider (C-1). Fixing some index j, recall that

sj = vj ⊕ ij = π(R⊕ wj)⊕ ij .

Since Q is good, π(R⊕wj) is uniform in a set of size at least 2k − p (and thus so is sj). Therefore,

Pr[∃(x, y) ∈ Qπ : sj = x] ≤ p

2k − p
≤ 2p

2k
,
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using p < 2k/2. Similarly,

Pr[sj ∈ U ] ≤ |U|
2k − p

≤ 2q

2k

(note that U is defined independent of π). Taking a union bound over all j, we see that the
probability of (C-1) is at most 2q(p+ q)/2k.

Next consider (C-2). Fixing some index j, recall that tj = zj ⊕ vj ⊕ bjR = zj ⊕π(R⊕wj)⊕ bjR
and so, arguing as above, we have

Pr[∃(x, y) ∈ Qπ : tj = y] ≤ p

2k − p
<

2p

2k
.

Fixing some v` ∈ V, we have tj = v` iff

zj ⊕ π(R⊕ wj)⊕ bjR = π(R⊕ w`).

The above can only possibly occur if j 6= ` since, if not, then zj⊕bjR = 0k in contradiction to (B-2).
But if j 6= ` then π(R ⊕ w`) is uniform in a set of size at least 2k − p− 1 even conditioned on the
value of π(R⊕ wj) and thus

Pr[tj = v`] ≤
1

2k − p− 1
≤ 2

2k

(using p < 2k/2). Taking a union bound over all v` ∈ V we see that the probability that tj ∈ V
is at most 2q/2k. Finally, taking a union bound over all j (and considering both sub-cases above)
shows that the probability of (C-2) is at most 2q(p+ q)/2k.

To analyze (C-3), fix distinct j, `. Then sj = s` iff π(R⊕wj)⊕ ij = π(R⊕w`)⊕ i`. If wj = w`
then ij 6= i` and so sj = s` is impossible. Otherwise, π(R ⊕ wj) is uniform in ≥ 2k − p − 1 values
even conditioned on the value of π(R⊕ w`), and thus

Pr[sj = s`] ≤
1

2k − p− 1
≤ 2

2k
.

The event tj = t` occurs iff

zj ⊕ π(R⊕ wj)⊕ bjR = z` ⊕ π(R⊕ w`)⊕ b`R.

The above can only possibly occur if j 6= ` since, if not, then bjR⊕ zj = b`R⊕ z` in contradiction
to (B-3). But if wj 6= w` then π(R ⊕ wj) is uniform in a set of at least 2k − p − 1 values, even
conditioned on π(R ⊕ w`), and so Pr[sj = s`] ≤ 2

2k
. Taking a union bound over all distinct j, `

shows that the probability of (C-3) is at most 2q2/2k. In summary, we have

Pr[Bad(π) | π ` Qπ] ≤ 4q(p+ q) + 2q2

2k
. (2)

The probability that the ideal world is consistent with the good transcript Q is exactly (1).
The probability that the real world is consistent with the transcript is

Pr[∀(w, i, b, z) ∈ QO : Otccr
R (w, i, b) = z | π ` Qπ]

(2k)p
· PrR[R].

Write π `j Q if π ` Qπ and Otccr
R (w`, i`, b`) = z` for all ` ≤ j. The numerator above is at least

Pr[π `q Q ∧ ¬Bad(π) | π ` Qπ]
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≥
(
1− Pr[Bad(π) | π ` Qπ]

)
·
q∏
j=1

Pr[π `j Q | ¬Bad(π) ∧ π `j−1 Q]. (3)

Consider any π such that π ` Qπ and ¬Bad(π). Note that Otccr
R (wj , ij , bj) = zj iff π(sj) = tj (for

sj , tj as defined before). If ¬Bad(π), there is no query of the form (sj , ?) or of the form (?, tj)
in Qπ. Moreover, since neither (C-1) nor (C-2) occur, neither π(sj) nor π−1(ti) is determined by
the input/output relations {π(uj) = vj}j=1,...,q. Furthermore, since (C-3) does not occur, neither
π(sj) nor π−1(tj) is determined by the fact that π `j−i Q or, equivalently, the fact that π(s`) = t`
for all ` < j. Thus, for all j we have

Pr[π `j Q | ¬Bad(π) ∧ π `j−1 Q] ≥ 1/2k,

and therefore
Pr[π `q Q | ¬Bad(π) ∧ π ` Qπ] ≥ 1/2kq.

It follows from (3) that the ratio of the probability that the real world is consistent with Q to the
probability that the ideal world is consistent with Q is at least

1− Pr[Bad(π) | π ` Qπ].

Using (2) completes the proof.

7.5 On the Concrete-Security Bounds

Assume for simplicity that ρ = k. All the hash-function constrictions we analyze in the preceding
sections have concrete security O((pq+ q2)/2k). For the applications we consider in this paper, q is
fixed by the protocol but p reflects the number of queries the attacker makes to π/π−1 and is thus
limited only by the attacker’s running time. It is thus natural to wonder whether the O(pq/2k)
term can be avoided. We argue here that this is unlikely for efficient constructions.

We focus on correlation robustness for simplicity. Fix some hash function H that depends on
a permutation π, and assume for concreteness that an evaluation of H requires a single evaluation
of π. (The argument can be extended for the general case.) Consider an following attacker with
oracle access to Ocr

R(x) = H(R⊕ x):

1. Locally evaluate H on p uniform inputs, i.e., compute z∗1 = H(v∗1), . . . , z∗p = H(v∗q ). Note
that this requires (at most) p queries to π.

2. Query Ocr
R on q uniform inputs, i.e., obtain z1 = O(x1), . . . , zq = O(xq).

3. If z∗i = zj for some i, j, then set R∗ = v∗i ⊕ xj as a candidate guess for R. This guess can be
verified using one additional query to each of π and Ocr

R .

(This is a “slide with a twist attack” [BW00] adapted to our setting.) The distinguishing advantage
of this attack is O(pq/2k).

8 Evaluation

In this section we evaluate the performance of our hash-function constructions from Section 7 both
on their own as well as when they are used in various protocols. The primary goal of our work
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Batch size 1 2 4 8

SHA-3 1375 1381 1374 1432
SHA-256 588 584 594 588

AES + key-sched. 81 55 37 37
XORP 48 27 22 22

doubling 51 28 16 13.5
Fixed-key AES 41 21 11 10

MMOπ 43 26 13 12

M̂MO
π

σ 46 26 14 13
TMMOπ 81 45 25 21

Table 3: Performance of symmetric-key primitives. All values represent the amortized cost
per call, measured in CPU cycles. See text for further details.

is security, not efficiency. Nevertheless, we show that our work results in noticeable performance
improvements over the state-of-the-art.

All timing results were obtained using an Intel(R) Xeon(R) Platinum 8124M CPU running
at 3.00GHz. This CPU uses a Skylake architecture with hardware support for AES, where AES-NI
has a latency of 4 cycles with a throughput of 1 cycle per instruction. All tests use only a single
core. The implementations evaluated here are all publicly available at EMP [WMK16].

8.1 Implementing the Hash Functions

Our constructions of correlation robust and tweakable (circular) correlation robust hash functions
from Section 7 only involve XORs and calls to AES. Our construction of a circular correlation robust
hash function from Section 7.3, however, also requires a linear orthomorphism σ. We implement σ
as described in that section using the mm shuffle epi32 instruction that is available since SSE2.
This instruction allows for arbitrary permutations of the four 32-bit integers that comprise a 128-bit
value. We can thus implement σ via

σ(a) = mm shuffle epi32(a, 78)⊕ and si128(a, mask),

where mask = 164‖064 is a constant. In the CPU we used for our experiments, the mm shuffle epi32

instruction executes in 1 cycle, while the other two instructions need 0.33 cycles each, so our im-
plementation of σ requires just 1.66 cycles. This is in contrast to prior instantiations of a linear or-
thomorphism based on finite-field doubling [BHKR13], which require 3.66 cycles on the same CPU.

In Table 3 we compare the performance of our hash functions with other symmetric-key primi-
tives. These are:

• “SHA-256” (resp., “SHA-3”) refers to computing SHA-256 (resp., SHA-3) on a 256-bit input.
The implementations from openssl are used.

• “AES + key-sched.” refers to performing key scheduling for AES-128 (using optimizations of
Gueron et al. [GLNP15]) followed by a single AES evaluation.

• “doubling” refers to computation of the function H(x, i) = π(2x ⊕ i) ⊕ 2x ⊕ i, where π is
AES-128 with a fixed key.
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Protocols
Malicious Semi-honest

High Med. Low High Med. Low

S-OT (prior) 2.03 1.74 0.49 9.10 2.46 0.50
S-OT (here) 8.50 2.346 0.49 9.10 2.46 0.50

C-OT (prior) 2.04 1.76 0.74 3.2 2.71 0.74
C-OT (here) 9.17 3.60 0.74 10.9 3.66 0.74

R-OT (prior) 3.7 2.85 1.13 3.7 2.91 1.14
R-OT (here) 12.1 6.27 1.43 14.6 6.61 1.46

Table 4: Performance of OT-extension protocols. Numbers reported are in millions of OTs
per second, and include 128 base OTs.

• “XORP” refers to computation of H(x) = π1(x)⊕π2(x), where π1, π2 are both AES-128 with
fixed keys.

• “Fixed-key AES” is simply AES-128 with a fixed key.

The final three rows of the table refer to the hash functions we construct in Section 7, implemented
as discussed. In each case, π is instantiated using AES-128 with a fixed key.

We evaluate the performance of the above primitives on different batch sizes (i.e., evaluating
the primitive multiple times in parallel) to explore the benefit of instruction-level pipelining. We
tested batch sizes as high as 32, but found little improvement above a batch size of 8. All numbers
reported in the table are an average over 225 experiments.

Discussion. We find that M̂MO
π

σ is almost as efficient as MMOπ, while TMMOπ is roughly 2×
slower. We can also see that M̂MO

π

σ is roughly 3× faster than nonfixed-key AES, which directly
translates to a 3× improvement in the applications described in Section 6. For example, an im-
plementation of the GGM tree construction using our MMOπ hash function takes roughly 6 ms to
expand a 128-bit seed into one million 128-bit values, while the solution based on nonfixed-key AES
takes about 21 ms for the same task. Finally, TMMOπ is 28× faster than SHA-256; as we discuss
further in the next section, this leads to a significant improvement in OT-extension protocols.

XORP is competitive with MMOπ and M̂MO
π

σ for low batch sizes, though is roughly twice
slower for a batch size of 8. We stress that XORP is non-compressing, and therefore does not
achieve tweakable (circular) correlation robustness; for that reason, it should not be compared
with TMMOπ.

8.2 OT Extension

As discussed in Section 4, prior constructions of malicious OT extension either rely on a crypto-
graphic hash function like SHA-256 (modeled as a random oracle), or are constructed from fixed-key
AES in an unprincipled—and often insecure—way. We can use our hash-function constructions in
place of SHA-256 to achieve provable security (if we model fixed-key AES as a random permuta-
tion) with better efficiency. (We stress that malicious OT extension requires tweakable correlation
robustness, and so XORP is inapplicable here.)

The actual improvement depends on the network speed. We benchmark the performance of our
OT protocols in three settings: “High” with a 5 Gbps network,“Medium” with a 1 Gbps network,
and “Low” with a 200 Mbps network. Results are summarized in Table 4, and are averaged over 225
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executions. S-OT, C-OT, and R-OT refer to standard-OT extension, correlated-OT extension, and
random-OT extension, respectively. The table shows that we obtain a 3–4× improvement, except
for the case of semi-honest standard-OT extension (where the existing implementation by Zahur et
al. based on fixed-key AES is secure).
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A Random-OT Extension

Random OT is similar to correlated OT except that both “messages” of the sender are chosen
uniformly by the ideal functionality; see Figure 6. It also has applications to secure computa-
tion [ALSZ13]. In Figure 7 we show a protocol realizing this functionality in the F∆-ROT-hybrid
model, in both the semi-honest and malicious settings.

Theorem 7. If H is cr (resp., tcr) then protocol ΠR-OT securely realizes FR-OT for semi-honest
(resp., malicious) adversaries in the F∆-ROT-hybrid model.

Proof. The proof is very similar to the proof of Theorem 2. As in that case, security for a cor-
rupted PA is perfect and easy to show, and we thus focus on a corrupted PB. We consider the
malicious setting; the semi-honest setting follows similarly.

The simulator S for a malicious PB is as follows:

1-2. S obtains the inputs (x1, . . . , xm), as well as the values {bi}i∈[m], that A sends to F∆-ROT,

S also chooses a uniform ∆ and answers A’s global key query (if any) using ∆.

3. S sets mxi
i := H(bi, i) and sends (x1, . . . , xm) and {mxi

i } to FR-OT.

The proof of indistinguishability (for the joint distribution on the output of PA and the view of PB)
is similar to the proof of Theorem 1.
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Functionality FR-OT

Upon receiving (Extend) from PA and (x1, . . . , xm) from PB with xi ∈ {0, 1} do:

1. For each i ∈ [m], sample uniform m0
i ,m

1
i ∈ {0, 1}

k
.

2. If PA is corrupted, wait for A to send {(m0
i ,m

1
i )}.

If PB is corrupted, wait for A to send {mxi
i }.

3. Send {(m0
i ,m

1
i )} to PA and {mxi

i } to PB.

Figure 6: Functionality FR-OT.

Protocol ΠR-OT

Inputs: PB has x1, . . . , xm with xi ∈ {0, 1}.

Protocol:

1. PA chooses uniform ∆ and sends (Init,∆) to F∆-ROT; PB sends (Init) to F∆-ROT.

2. PB sends (x1, . . . , xm) to F∆-ROT, which returns a1, . . . ,am to PA and b1, . . . ,bm to PA.

3. Semi-honest security: For i ∈ [m] and b ∈ {0, 1}, PA computes mb
i := H(ai ⊕ b∆); PB sets

mxi
i := H(bi).

Malicious security: For i ∈ [m] and b ∈ {0, 1}, PA computes mb
i := H(ai ⊕ b∆, i); PB sets

mxi
i := H(bi, i).

Figure 7: Protocol ΠR-OT.

B On Defining Correlated OT

We give an explicit attack showing that the protocol for correlated-OT extension by Asharov et
al. [ALSZ15] does not realize their correlated-OT functionality in the malicious setting. A similar
attack also works for random-OT extension.

In Figure 8 we show the original correlated-OT functionality as defined by Asharov et al.
[ALSZ15]. Compared to our version of the ideal functionality in Figure 4, this ideal functionality
is stronger since it does not allow the adversary to specify the output it receives. In particular, a
malicious PB is no longer allowed to specify the values {mxi

i }. Asharov et al. propose a protocol
that is the same as ours (cf. Figure 5), and claim security when H is modeled as a random oracle.

Since a malicious PB can fully determine the values of bi, however, it can clearly choose them in
such a way that each of the {mxi

i } satisfy some predicate, e.g., that the least-significant bit of mxi
i

is equal to 0 for all i. This holds true regardless of how H is instantiated, as long as the adversary
can evaluate H throughout the entire protocol.
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Functionality F ′C-OT

Upon receiving (∆1, . . . ,∆m) from PA and (x1, . . . , xm) from PB with xi ∈ {0, 1} do:

1. For each i ∈ [m], sample uniform m0
i and set m1

i := m0
i ⊕∆i.

2. Send {(m0
i ,m

1
i )} to PA and {mxi

i } to PB.

Figure 8: The original functionality F ′C-OT for correlated OT proposed by Asharov et al. [ALSZ13,
ALSZ15].
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