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Abstract

The Learning Parity with Noise (LPN) problem has recently found many cryptographic
applications such as authentication protocols, pseudorandom generators/functions and even
asymmetric tasks including public-key encryption (PKE) schemes and oblivious transfer
(OT) protocols. It however remains a long-standing open problem whether LPN implies
collision resistant hash (CRH) functions. Inspired by the recent work of Applebaum et al.
(ITCS 2017), we introduce a general construction of CRH from LPN for various parameter
choices. We show that, just to mention a few notable ones, under any of the following
hardness assumptions (for the two most common variants of LPN)

1. constant-noise LPN is 2n
0.5+ε

-hard for any constant ε > 0;

2. constant-noise LPN is 2Ω(n/ log n)-hard given q = poly(n) samples;

3. low-noise LPN (of noise rate 1/
√
n) is 2Ω(

√
n/ log n)-hard given q = poly(n) samples.

there exists CRH functions with constant (or even poly-logarithmic) shrinkage, which can
be implemented using polynomial-size depth-3 circuits with NOT, (unbounded fan-in) AND
and XOR gates. Our technical route LPN→bSVP→CRH is reminiscent of the known re-
ductions for the large-modulus analogue, i.e., LWE→SIS→CRH, where the binary Shortest
Vector Problem (bSVP) was recently introduced by Applebaum et al. (ITCS 2017) that
enables CRH in a similar manner to Ajtai’s CRH functions based on the Short Integer So-
lution (SIS) problem.

Furthermore, under additional (arguably minimal) idealized assumptions such as small-
domain random functions or random permutations (that trivially imply collision resistance),
we still salvage a simple and elegant collision-resistance-preserving domain extender com-
bining the best of the two worlds, namely, maximized (depth one) parallelizability and

polynomial shrinkage. In particular, assume 2n
0.5+ε

-hard constant-noise LPN or 2n
0.25+ε

-
hard low-noise LPN, we obtain a collision resistant hash function that evaluates in parallel
only a single layer of small-domain random functions (or random permutations) and shrinks
polynomially.

1 Introduction

1.1 Learning Parity with Noise

Learning Parity with Noise. The computational version of the Learning Parity with Noise
(LPN) assumption with secret size n ∈ N and noise rate 0 < µ < 1/2 postulates that given any
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number of samples q = poly(n) it is computationally infeasible for any probabilistic polynomial-

time (PPT) algorithm to recover the random secret x
$←− {0, 1}n given (A, A · x + e), where A

is a random q×n Boolean matrix, e follows Bqµ = (Bµ)q, Bµ denotes the Bernoulli distribution
with parameter µ (taking the value 1 with probability µ and the value 0 with probability 1−µ),
‘·’ and ‘+’ denote (matrix-vector) multiplication and addition over GF(2) respectively. The
decisional version of LPN simply assumes that (A, A · x + e) is pseudorandom. The two
versions are polynomially equivalent [14, 39, 6].

Hardness of LPN. The computational LPN problem can be seen as the average-case analogue
of the NP-complete problem “decoding random linear codes” [10]. LPN has been also extensively
studied in learning theory, and it was shown in [33] that an efficient algorithm for LPN would
allow to learn several important function classes such as 2-DNF formulas, juntas, and any
function with a sparse Fourier spectrum. When the noise rate µ is constant (i.e., independent
of secret size n), Blum, Kalai and Wasserman [15] showed how to solve LPN with time/sample
complexity 2O(n/ logn). Lyubashevsky [45] observed that one can produce almost as many LPN
samples as needed using only q = n1+ε LPN samples (of a lower noise rate), which implies a
variant of the BKW attack [15] with time complexity 2O(n/ log logn) and sample complexity n1+ε.
If one is restricted to q = O(n) samples, then the best attack has exponential complexity 2O(n)

[50]. Under low noise rate µ = 1/
√
n, the best attacks [18, 11, 42, 9] solve LPN with time

complexity 2O(
√
n). The low-noise LPN is mostly believed a stronger assumption than constant-

noise LPN. In noise regime µ = 1/
√
n, LPN can be used to build public-key encryption (PKE)

schemes [2] and oblivious transfer (OT) protocols. Quantum algorithms [32] that build upon
Grover search may achieve a certain level (up to quadratic) of speedup over classic ones in
solving LPN, which does not change the asymptotic order (up to the constant in the exponent)
of the complexity of the problem. This makes LPN a promising candidate for “post-quantum
cryptography”. Furthermore, LPN enjoys simplicity and is more suited for weak-power devices
(e.g., RFID tags) than other quantum-secure candidates such as Learning with Errors (LWE)
[58] as the many modular additions and multiplications in LWE would be simplified to AND
and XOR gates in LPN.

Symmetric-key cryptography from constant-noise LPN. LPN was used to build
lightweight authentication schemes (e.g. [35, 38, 39], just to name a few). Kiltz et al. [41]
and Dodis et al. [26] constructed randomized MACs from LPN, which implies a two-round
authentication scheme with security against active adversaries. Lyubashevsky and Masny [47]
gave a more efficient three-round authentication scheme from LPN and recently Cash, Kiltz,
and Tessaro [19] reduced the round complexity to 2 rounds. Applebaum et al. [4] used LPN to
construct efficient symmetric encryption schemes with certain key-dependent message (KDM)
security. Jain et al. [37] constructed an efficient perfectly binding string commitment scheme
from LPN. We refer to the survey [56] about cryptography from LPN.

Public-key cryptography and more from low-noise LPN. Alekhnovich [2] established
the feasibility result that public-key encryption (PKE) can be based on LPN in the low-noise
regime of µ = 1/

√
n. Döttling et al. [30] and Kiltz et al. [40] further showed that low-noise LPN

alone already suffices for PKE schemes with CCA (and KDM [29]) security. Once we obtain
a PKE, it is perhaps not so surprising to build an oblivious transfer (OT) protocol. That is,
LPN-based PKE uses pseudorandom public keys (so that one can efficiently fake random public
keys that are computationally indistinguishable from real ones) and in this scenario Gertner
et al. [34] showed how to construct an OT protocol in a black-box manner. This observation
was made explicit in [23], where universally composable OT protocols were constructed from
low-noise LPN. All the above schemes are based on LPN of noise rate 1/

√
n. The only exception

seems to be the recent result by Yu and Zhang [64] that PKE and OT can also be based on

constant-noise LPN with hardness 2n
1/2+ε

.

Open problems and recent progress. It remains open [56, 46] whether LPN implies other
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advanced cryptographic objects, such as fully homomorphic encryption (FHE) and collision re-
sistant hash (CRH) functions. Brakerski [16] reported some negative result that straightforward
LPN-based encryptions are unlikely to achieve full homomorphism. As for LPN-based CRH, a
notable progress was recently made by Applebaum et al. [5], who showed that 2Ω(n/ logn)-hard
constant-noise LPN implies CRH 1. Based on some ideas (in particular, the bSVP assumption)
from [5], we introduce a general construction of CRH from LPN with various tunable trade-
offs between the parameters (e.g., noise rate, hardness, shrinkage), and then present the main
feasibility results in commonly assumed noise regimes.

On the concurrent work of [17]. Concurrently and independent of this work, Brakerski
et al. [17] used essentially the same technique as [5] and ours and constructed CRH from LPN
at the (extremely low) noise rate of µ = log2 n/n, which can be derived as a special case under
our framework.

1.2 Cryptographic Hash Functions

A cryptographic hash function {0, 1}∗ → {0, 1}n is a deterministic function that maps
arbitrarily (or at least sufficiently) long bit strings into digests of a fixed length. The function
was originally introduced in the seminal work of Diffie and Hellman [25] to produce more
efficient and compact digital signatures. As exemplified by MD5 and SHA-1/2/3, it is now
one of the most widely used cryptographic primitives in security applications and protocols,
such as SSL/TLS, PGP, SSH, S/MIME, IPsec and Bitcoin. Merkle [53] formulated three main
security properties (that still remain in use to date) of a cryptographic hash function: preimage
resistance, second preimage resistance and collision resistance, of which collision resistance seems
the most essential and suffices for many aforementioned applications 2. Similar to the mode
of operations for data encryption, the design of cryptographic hash functions proceeds in two
steps: one first designs a compression function that operates on fixed-length inputs and outputs,
and then applies a domain extender to accept messages of arbitrary length. This dates back
to the independent work of Merkle [55] and Damg̊ard [22], who proposed a domain extender,
and showed that if the underlying compression function is collision resistant then so is the hash
function based on the Merkle-Damg̊ard construction. We refer to [3] for a survey about various
domain extenders for cryptographic hash functions. For the rest of this paper we will focus on
such length-regular collision resistant compression functions, namely, CRH functions.

Collision Resistant Hashing. Theoretical constructions of CRH functions can be based on
the hardness of factoring and discrete logarithm (via the construction of claw-free permutations
[21]), which are however far from practical. Ajtai [1] introduced an elegant and (conceptually)
simple construction: fA : {0, 1}m → Znp that for a random A ∈ Zn×mp and some (at least
polynomially) large p and on input z ∈ {0, 1}m it computes

fA(z) = A · z mod p , (1)

which is collision resistant via a security reduction from the Short Integer Solution (SIS) prob-
lem, and is thus at least as hard as lattice problems such as GapSVP and SIVP. Lyubashevsky
et al. [48] gave a ring-based variant of Ajtai’s construction, called SWIFFT, which admits FFT
and precomputation techniques for improved efficiency while preserves an asymptotic security
proof from ideal lattices at the same time. Despite a substantial gap between the claimed se-
curity level and the actual security bounds proved, SWIFFT [48] and its modified version (as a

1More precisely, [5] obtains a win-win result that either constant-noise LPN implies CRH or one achieves
arbitrary polynomial speedup over the BKW algorithm [15].

2Unlikely collision resistance whose definition is unique and unambiguous, there are several variants of (second)
preimage resistance for which people strive to find a compromise that facilitates security proofs yet captures the
needs of most applications. Some variants of (second) preimage resistance are implied by collision resistance in
the conventional or provisional sense [60].
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SHA-3 candidate) SWIFFTX [7] are among the very few hash function designs combining the
best of two worlds (i.e., practical efficiency and rigorous security proof).

The Expand-then-Compress Approach. Recently, Applebaum et al. [5] constructed a
function hM : {0, 1}k → {0, 1}n keyed by a random n× q binary matrix M as:

hM(y) = M · Expand(y) , (2)

where Expand is an injective function that expands y into a much longer yet sparse string,
i.e., for every y ∈ {0, 1}k: t = |Expand(y)| < n < k < q. Note that hM can be viewed as a
binary version of Ajtai’s CRH (see fA in (1)), where matrix A over Zp is simplified to a binary
matrix M, and binary vector z is further flattened to a sparse binary vector Expand(y). Thanks
to the simplification to the binary field, hM can be implemented rather efficiently both in the
asymptotic sense and in practice. Under certain realizations of Expand (see Lemma 3.1), hM (for
any specified M) can be directly translated to a polynomial-size circuit of NOT, (unbounded fan-
in) XOR and AND gates in depth 3 (or even depth 2 if the input includes not only the individual
bits of y but also their respective complements). Interestingly, the FSB hash proposal [8] and
its variant the RFSB hash [12] fall into concrete (but over optimistic) instantiations of hM.3

Binary SVP. In order to justify the asymptotic security of the EtC hash, Applebaum et al.
[5] introduced the binary Shortest Vector Problem (binary SVP or bSVP in short). Informally,

the bSVP assumption asserts that given a random matrix distribution4 M
$←− {0, 1}n×q, it is

computationally infeasible to find a non-zero x ∈ {0, 1}q of Hamming weight t � q such that
Mx = 0. From a code-theoretic perspective, M specifies the n × q parity check matrix of
a random binary linear code of rate 1 − n/q, where the rows of M are linearly independent
(except with negligible probability), and therefore the bSVP postulates that finding a short
codeword is hard in the average case. We refer to [5] for discussions about meaningful regimes
of (t/q) that give rise to one-way functions and collision resistant hash functions. Similar to
SIS, bSVP immediately implies CRH as any efficient algorithm that comes up with a collision
hM(y) = hM(y′) for y 6= y′ immediately implies a solution to bSVP, i.e., M · x = 0, where
x = Expand(y) − Expand(y′) has weight no greater than 2t. We mention that in the worst
case, it is NP-hard to compute (or even to approximate by a constant factor) the distance of a
linear code [63, 31]. However, as an average-case hardness assumption, bSVP is relatively new
and deserves further investigation. A shortcut and promising direction is to see whether bSVP
is reducible from the learning parity with noise (LPN) problem since they are both related to
random binary linear codes, and the average-case hardness of the latter is well understood.
However, the work of [5] only established a weak connection between bSVP and LPN. That is,
they show that at least one of the following is true:

1. One can achieve an arbitrary polynomial speedup over the BKW algorithm [15], i.e., for
every constant ε > 0 there exists an algorithm that solves constant-noise LPN with time
and sample complexity 2

εn
logn for infinitely many n’s.

2. There exist CRH functions of constant shrinkage and logarithmic degree.

Otherwise stated, assume that the BKW algorithm cannot be further improved asymptotically,
then bSVP (for certain parameters) and CRH are implied.

1.3 The Construction of CRH from LPN

Duality between LPN and bSVP. We explain the high-level intuition of how LPN relates
(and reduces) to bSVP (deferring the choices of non-trivial parameters to next paragraph),

3 However, our results do not immediately constitute security proofs for the FSB-style hash functions as there
remains a substantial gap between the security proved and security level claimed by the FSB instantiation.

4M in our consideration has dimension n× q instead of αn× n considered by [5].
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which in turn implies CRH. Under the theme of “decoding random linear codes” where row
vector sT is the message, M is an n× q generator matrix and sTM is the codeword, the idea is
to use a (sparse) column vector x from the corresponding parity matrix such that any (noisy)
codeword multiplied by x is (biased to) 0, regardless of the value of s. Informally, assume for
contradiction that a useful bSVP solver succeeds in finding a sparse vector x for an n×q matrix
M such that Mx = 0, then this leads to a distinguishing attack against the LPN instance (M,
sTM + eT) by computing

(sTM + eT) · x = eTx

which is a biased bit (and thus distinguishable from uniform) due to the sparseness of x and e.
This already constitutes a contradiction to the decisional LPN, and one can repeat the above on
sufficiently many independent samples (with a majority voting) to gain a constant advantage,
and further transform it into a key-recovery attack using the same number of samples [6].

Main feasibility results. By exploiting the duality between LPN and bSVP, we present a
general framework stated in Theorem 1.1 below (and more formally in Theorem 3.1) that enables
to construct CRH from LPN for various tunable parameter choices, as stated in Corollary 1.1
(and more formally in Corollary 3.1). The constructions follow the Expand-then-Compress
approach and can be implemented by a polynomial-size depth-3 circuit with NOT, (unbounded
fan-in) AND and XOR gates5. The framework, in particular, when tuned to params #2 and
#4 of Corollary 1.1, encompasses the known results obtained in [6] and the concurrent work of
[17]. In addition, it establishes feasibility results for constant-noise LPN assuming much less
hardness (see param #1 of Corollary 1.1) and for low-noise LPN (see param #3 of Corollary 1.1),
which was not previously known. We remark that the 2Ω(

√
n/ logn)-hardness assumption for low-

noise LPN is quite reasonable as the current best attacks need complexity poly(n) · e
√
n [43]

for which even improving upon the constant in the exponent seems nontrivial. Further, the
2n

0.501
-hardness assumed for constant-noise LPN offers even more generous security margins as

the best attack goes even beyond 2n
0.999

[15].

Theorem 1.1 (main framework, informal) Let n be the security parameter, and let µ =

µ(n), k = k(n), q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤ T ≈ 2
8µt

ln 2(1−2µ) . Assume
that the (decisional) LPN problem of size n and noise rate µ is T -hard given q samples, and let

hM : {0, 1}k → {0, 1}n, hM(y) = M · Expand(y), Expand : {0, 1}k → {0, 1}q,

be functions satisfying the following conditions:

1. (hM is compressing). k > n;

2. (Expand has sparse outputs). for all y ∈ {0, 1}k: |Expand(y)| = t;

3. (Expand is injective). Expand is an injection with k ≈ log
(
q
t

)
= (1 + o(1)) log(q/t)t >

t log q/2 (see Fact 2), where the inequality is due to t ≤ √q.

Then, hM
6 is a CRH function with shrinkage factor n

k .

Rationale. Upon any collision y 6= y′ we get that x = Expand(y) − Expand(y′) such that
eTx, i.e., the XOR sum of up to 2t bits drawn from Bµ is

1

2
+

2
−(log 1

1−2µ
)2t

2
≥ 1

2
+

2
− 4µt

ln 2(1−2µ)

2

5The circuit falls into the class AC0(MOD2). See Section 2 for a formal definition.
6More strictly speaking, the resulting CRH is either hM itself or its domain-extended version (by a parallel

repetition).
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biased to 0 by the Piling up lemma (Lemma 2.1) and inequality ln(1 + x) ≤ x. Otherwise said,

the underlying decisional LPN must be 2
Ω(µt)

(1−2µ) -hard to counteract the aforementioned attack.
We refer to Theorem 3.1 for a more formal statement and a rigorous proof. The framework
allows for various trade-offs between µ, q and T (via the intermediate parameter t) and we state
a few notable ones in Corollary 1.1 below. Moreover, the CRH can be contained in AC0(MOD2)
based on a parallel implementation of the underlying function Expand in AC0.

Corollary 1.1 (LPN → CRH) Type LPN with Hardness implies CRH with Shrinkage in AC0(MOD2),
where (Type , Hardness, Shrinkage) can be (but are not limited to) any of the following:

1. (Constant-noise, less hardness, poly-logarithmic shrinkage).
µ = O(1), T = 2n

0.5+ε
, q = 2n

0.5
and n

k <
16µ

ln 2(1−2µ)nε = 16µ
ln 2(1−2µ) log2ε λ

for any constant

ε > 0.

2. (Constant-noise, more hardness, constant shrinkage).

µ = O(1), T = 2
εn

logn , q = nCε,µ , nk <
1
2 for any constant ε > 0 and Cε,µ = max( 32µ

ε ln 2(1−µ) , 2).

3. (Low-noise, more hardness, constant shrinkage).

µ = 1/
√
n, T = 2

ε
√
n

logn , q = nCε,µ , n
k <

1
2 for any constant ε > 0 and C ′ε,µ = max( 32

ε ln 2 , 2).

4. (Extremely low-noise, standard hardness, constant shrinkage).

µ = (logn)2

n , T = q > poly(n) for every poly, and n
k <

1
2 .

Intuitions about parameters choices. The aforementioned parameter choices are not
exhaustive but they follow quite naturally from the respective noise rates. We explain the
underlying intuitions for making such choices (and refer to Corollary 3.1 and its proof for formal
details). For immediate efficiency we set q = poly(n) (s.t. the dimensions of M are polynomially
related) and constant shrinkage factor n

k < 2n
t log q = 1

2 , and therefore t = Ω(n/ log n) and it

requires hardness T = 2Ω(µn/ logn). This yields the parameter settings #2, #3 and #4 for
constant, low and extremely low noise rates respectively. Alternatively, in favor of minimized
hardness assumed for constant-noise LPN, we let the sample complexity be nearly the same
as time complexity up to a factor nε,7 i.e., log(q) = Ω( log T

nε ) = Ω( t
nε ) and thus the injective

condition becomes k = Ω(t2/nε) and n
k < n1+ε

Ω(t2)
, which results in param #1 by setting t =

Ω(n0.5+ε). However, now the issue is that the dimensions q and n of M are not polynomially
related and thus it does not immediately give rise to an efficient CRH. This motivates us to
switch to another parameter λ = q = 2

√
n such that hM : {0, 1}Ω(log2+2ε λ) → {0, 1}log2 λ for

M ∈ {0, 1}log2 λ×λ is a λΩ(log2ε λ)-hard CRH function computable in time poly(λ), which further

implies a domain-extended CRH h′M : {0, 1}Ω(λ log2ε λ) → {0, 1}λ by a parallel repetition.

Feasibilities vs. limits. Admittedly, the limits of the framework are obvious: unless under
extremely low noise rate [17] the hardness assumed is much beyond polynomial (although still
reasonable given the current state-of-the-art). Moreover, the parameter-switching technique
(that helps to reduce hardness assumed) dramatically downgrades the security and deteriorates
the shrinkage factor from polynomial to poly-logarithmic. Further, the technique only applies
to constant noise: if the noise rate µ depends on n, e.g., µ = 1/

√
n, then switching to a new

parameter, say λ = 2n
0.25

, yields lifted noise rate µ = 1/ log2 λ. We offer an alternative to avoid
the efficiency/security loss by assuming a minimal amount of heuristics, e.g., a small domain
random function. This helps to obtain a polynomially shrinking domain extender that makes
only a single layer of evaluations on the underlying random function. In terms of parallelizability,

7By switching to a new security parameter, we eventually obtain a CRH function with polynomial running
time and super-polynomial security for which the nε gap factor plays a vital role.
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this beats generic (collision-resistance-preserving) domain extenders such as Merkle-Damg̊ard
[55, 22] and the Merkle-tree [44, 54], where to achieve polynomial shrinkage even the latter
needs to evaluate a tree of depth O(log n) on length-halving CRHs. A price to pay is that we
make additional (but reasonable) hardness assumptions, e.g., that the low-noise LPN problem
is 2n

0.25+ε
-hard.

Corollary 1.2 (A polynomially shrinking domain extender, informal) Assume that (n,µ,q)-
DLPN is T -hard and R : {0, 1}log(q) → {0, 1}n with log(q)� n behaves like a random function,
then for y = y1‖ · · · ‖yt parsed as t = k/L blocks, each of size L = log(q/t), we have

hR : {0, 1}k → {0, 1}n, hR(y) =

t⊕
i=1

R(i‖yi),

is a CRH function with shrinkage n
k , where (µ,T ,q,nk ) can be either below:

1. (Constant-noise, less hardness, polynomial shrinkage).
µ = O(1), T = 2n

0.5+ε
, q = 2n

0.5
and n

k <
16µ

ln 2(1−2µ)nε for any constant ε > 0.

2. (Low-noise, less hardness, polynomial shrinkage).
µ = 1/

√
n, T = 2n

0.25+ε
, q = 2n

0.25
and n

k <
16

ln 2·nε for any constant ε > 0.

On related heuristic-based approaches. It may seem trivial to obtain CRHs from ide-
alized heuristics such as random oracles and ideal ciphers, but we stress that we only make
a quite light use of idealism by assuming a small-domain random function with inputs much
shorter than outputs (for which domain extension is non-trivial), which can be efficiently in-
stantiated from practical objects such as blockciphers (assuming that a blockcipher on a public
random key behaves like a random permutation). In contrast, most previous blockcipher-based
compression functions (e.g. [55, 57, 13]) reside in the (much stronger) Ideal Cipher Model that a
block cipher on every key behaves independently like a random permutation. Moreover, existing
permutation-based solutions either only offer a constant shrinkage factor (typically 1/2) [62, 51],
or require permutations with a large domain (e.g., [28] needs a large permutation over {0, 1}n2

to obtain a CRH function with shrinkage factor 1/n).

2 Preliminaries

Notations and definitions. Column vectors are represented by bold lower-case letters (e.g.,
s), row vectors are denoted as their transpose (e.g., sT), and matrices are denoted by bold capital
letters (e.g., A). |s| refers to the Hamming weight of binary string s. We use Bµ to denote the
Bernoulli distribution with parameter µ, while Bqµ denotes the concatenation of q independent

copies of Bµ. We use log(·) to denote the binary logarithm. x
$←− X refers to drawing x from

set X uniformly at random, and x ← X means drawing x according to distribution X. a‖b
denotes the concatenation of a and b. A function negl(·) is negligible if for any constant Nc we
have that negl(n) < 1/poly(n) for every polynomial poly and all sufficiently large n. AC0 refers
to the class of polynomial-size, constant-depth circuit families with unbounded fan-in AND and
OR gates, where NOT gates are allowed only at input level. AC0(MOD2) refers to the class
of polynomial-size, constant-depth circuit families with unbounded fan-in AND, OR and XOR
gates.

We define decisional and computational LPN problems, and we just use the decisional one
due to their polynomial equivalence. In particular, there are computational-to-decisional reduc-
tions even for the same sample complexity [6].
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Definition 2.1 (Learning Parity with Noise) Let n be the security parameter, and let µ =
µ(n), q = q(n) and T = T (n). The decisional LPN problem with secret length n, noise rate
0 < µ < 1/2 and sample complexity q, denoted by (n,µ,q)-DLPN, is T -hard if every probabilistic
algorithm D of running time T we have that the following holds for all sufficiently large n’s∣∣Pr[D(A, A·x+e) = 1]− Pr[D(A,y) = 1]

∣∣ ≤ 1

T
, (3)

and the computational LPN problem with the same n, µ and q, denoted by (n,µ,q)-LPN, is
T -hard if for every probabilistic algorithm D of running time T we have that the following holds
for all sufficiently large n’s

Pr[ D(A, A·x+e) = x ] ≤ 1

T
, (4)

where q × n matrix A
$←− {0, 1}q×n and x

$←− {0, 1}n, y
$←− {0, 1}q and e← Bqµ.

Standard hardness. We recall that standard polynomial hardness requires that T >

poly(n), q > poly(n) and for every poly and all sufficiently large n’s.

Unlike other primitives (such as one-way functions, pseudorandom generators and functions)
whose security parameter is typically the input/key length, the security strength of collision
resistant hash functions are more often represented as a function of the output length n and it
is upper bounded by 2n/2 due to birthday attacks. In practice, a fixed output size (e.g. 128,
160) typically corresponds to a single function (e.g., MD5, SHA1) instead of a collection of ones
8. One can just stick to a hM for some pre-fixed random M.

Definition 2.2 (Collision Resistant Hash Functions) A collection of functions

H =
{
hz : {0, 1}k(n) → {0, 1}n, z ∈ {0, 1}s(n)

}
is a collision-resistant hash (CRH) function if the following hold:

• (Shrinking). The shrinkage factor of H, defined as ratio n
k , is less than 1 for every n.

• (Efficient). There are efficient algorithms H and G: (1) on input z ∈ {0, 1}s and
y ∈ {0, 1}k, H outputs hz(y); and (2) given 1n as input G returns an index z ∈ {0, 1}s.

• (Collision-resistant). For every probabilistic polynomial-time (PPT) adversary A

Pr
z←G(1n)

[ (y, y′)← A(z) : y 6= y′ ∧ hz(y) = hz(y
′) ] = negl(n) .

The shrinkage is linear if n/k ≤ 1 − ε, and it is poly-logarithmic (resp., polynomial) if n/k ≤
1/ logε n (resp., n/k ≤ 1/nε) for some positive constant ε > 0.
T -hardness. For T = T (n) we call H a T -hard CRH if no probabilistic adversary A of

running time T finds any collision with probability more than 1/T .

The indifferentiability framework [49, 20] is widely adopted to analyze and prove the security
of the construction of one idealized primitive from another, typically in settings where the
underlying building blocks have no secrets.

8Recall that a non-uniform attacker can obtain polynomial-size non-uniform advice. Thus, if every security
parameter corresponds to only a single function h then the attacker can include a pair of x and x′ with h(x) = h(x′)
as part of the advice.
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Definition 2.3 (Indifferentiability [20]) A Turing machine C with oracle access to an ideal
primitive P is (q, σ, t, ε)-indifferentiable from an ideal primitive R, if there exists a simulator S
with oracle access to R such that for any distinguisher D that makes at most q queries, it holds
that ∣∣∣∣Pr[DCP ,P = 1]− Pr[DR,SR = 1]

∣∣∣∣ ≤ ε,
where S makes σ queries and runs in time t when interacting with D and R.

The implication is that CP can securely replace R in many scenarios. We refer to [59, 24] for
discussions on the (in)applicability of indifferentiability results.

Lemma 2.1 (Piling-up lemma) For 0 < µ < 1/2 and random variables E1, E2, · · · , E` that
are i.i.d. to Bµ we have

Pr
[⊕̀
i=1

Ei = 0
]

=
1

2
(1 + (1− 2µ)`) =

1

2
+ 2−cµ`−1 ,

where cµ = log 1
1−2µ .

Fact 1 For any 0 ≤ x ≤ 1 it holds that log(1+x) ≥ x; and for any x > −1 we have log(1+x) ≤
x/ ln 2.

Fact 2 For k = o(n) we have log
(
n
k

)
= (1 + o(1))k log n

k .

3 Collision Resistant Hash Functions

3.1 The Expand-then-Compress Construction

We give a high-level overview about the EtC construction from [5]. Fix a random n×q matrix M
which specifies the function. On input y, hM first stretches it into a long-but-sparse vector, i.e.,
Expand(y), and then multiply it with M, which compresses into n bits. There are many ways to
instantiate hM and we use the following one which fulfills all properties needed by our framework
(cf. Theorem 1.1). In addition, Expand is highly parallel and can be efficiently implemented by a
single layer of (unbounded fan-in) AND gates (assuming input includes both the individual bits
of y and also their respective complements), and therefore hM simply builds upon Expand by
adding a layer of XOR gates. Furthermore, the Expand function can be efficiently instantiated
with idealized heuristics (see Lemma 3.3).

Lemma 3.1 (A realization of the expanding function [5]) Let n be the security parame-
ter and let k ≤ poly(n), L = O(log n), t = t(n), q = q(n) be integer-valued functions such that
k = L · t, q = t · 2L. Let Expand : {0, 1}k → {0, 1}q be a function that parses the k-bit input into
L-bit blocks as

y = y1 · · · yL‖yL+1 · · · y2L‖ · · · ‖yL(t−1)+1 · · · yLt
and produces as output

Expand(y) = DeMul(y1 · · · yL)‖ · · · ‖DeMul(yL(t−1)+1 · · · yLt)

where DeMul : {0, 1}L → {0, 1}2L is a demultiplexer function that on input z ∈ {0, 1}L outputs
a 2L-bit string which is 1 in exactly the z-th location (and 0 everywhere else). Then, we have
that

1. (Expand has sparse outputs). for all y ∈ {0, 1}k: |Expand(y)| = t;

9



2. (Expand is injective). Expand is injection with k = L · t = log(q/t)t.

3. (Expand is parallelizable). Expand is contained in AC0.

Our framework is based on the following expand-then-compress construction.

Construction 3.1 Let k = k(n) and q = q(n) be integer valued functions, and let Expand :
{0, 1}k → {0, 1}q be an expanding function as in Lemma 3.1. A collection of functions Hk,n =
{hM : {0, 1}k → {0, 1}n,M ∈ {0, 1}n×q} is defined as

hM(x) = M · Expand(x)

where the key-sampler G(1n) samples an n× q matrix M
$←− {0, 1}n×q.

3.2 The Main Framework of LPN-based CRH

We state our main framework in Theorem 3.1 and then derive the main feasibility results in
Corollary 3.1.

Theorem 3.1 (The main framework) Let n be the security parameter, and let µ = µ(n),

k = k(n), q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤ T = 2
8µt

ln 2(1−2µ) . Assume
that the (n,µ, q)-DLPN problem is T -hard, and let hM and Expand be defined as in Lemma 3.1
and Construction 3.1 respectively. Then, for every probabilistic adversary A of running time

T ′ = 2
4µt

ln 2(1−2µ)
−1

Pr
M

$←−{0,1}n×q
[ (y,y′)← A(M) : y 6= y′ ∧ hM(y) = hM(y′) ] ≤ 1

T ′
.

We do not say “hM is a T ′-hard CRH” as it may not be poly(n)-time computable.

Proof. Suppose for contradiction that A finds out a collision with probability more than 1/T ′

s.t. y 6= y′ and hM(y) = hM(y′), then we have M·x = 0, where x = Expand(y)−Expand(y′) 6= 0
due to the distinctiveness of Expand, and

|x| ≤ |Expand(y)|+ |Expand(y′)| ≤ 2t .

We define in Algorithm 1 below an LPN distinguisher D that on input (MT, z), where MT $←−
{0, 1}q×n, and either z = MTs + e (for e ← Bqµ) or z

$←− {0, 1}q, invokes A on M, and if
a collision (y,y′) is found, it outputs xTz for x = Expand(y) − Expand(y′), and otherwise it
outputs a uniform random bit. On a successful collision, we have by Lemma 2.1 and Fact 1

Pr[xTz = xTe = 0] ≥ 1

2
+

2
−(log 1

1−2µ
)2t

2
≥ 1

2
+

2
− 4µt

ln 2(1−2µ)

2
.

Therefore, D achieves an overall advantage of

Pr[D(MT,MTs + e) = 0]− Pr
z

$←−{0,1}q
[D(MT, z) = 0]

>
1

T ′
· 2
− 4µt

ln 2(1−2µ)

2
≥ 2

− 8µt
ln 2(1−2µ) ,

which is a contradiction to the assumption. �
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Algorithm 1 A distinguisher D for (n,µ, q)-DLPN

Input: (MT, z), where MT ∈ {0, 1}q×n and z ∈ {0, 1}q
(y,y′)← A(M);
x = y − y′;
if 0 < |x| ≤ 2t ∧Mx = 0 then
v = xTz

else
v

$←− {0, 1}
end if
Output: v

Corollary 3.1 (Main feasibility results) Assume that (n,µ, q)-DLPN is T -hard, then T ′-
hard CRH functions with shrinkage n

k exist in AC0(MOD2), where (µ,T ,q,T ′,nk ) can be any of
the following:

1. (Constant-noise, less hardness, poly-logarithmic shrinkage).

µ = O(1), T = 2n
0.5+ε

, q = 2n
0.5

, T ′ ≈ 2n
0.5+ε/2 = λlog2ε λ/2 and n

k < 16µ
ln 2(1−2µ)nε =

16µ
ln 2(1−2µ) log2ε λ

for any constant ε > 0.

2. (Constant-noise, maximal efficiency, constant shrinkage).

µ = O(1), T = 2
εn

logn , q = nCε,µ, T ′ ≈ 2
εn

2 logn , n
k < 1

2 for any constant ε > 0 and

Cε,µ = max( 32µ
ε ln 2(1−µ) , 2).

3. (Low-noise, maximal efficiency, constant shrinkage).

µ = 1/
√
n, T = 2

ε
√
n

logn , q = nCε,µ, T ′ ≈ 2
ε
√
n

2 logn , n
k < 1

2 for any constant ε > 0 and
C ′ε,µ = max( 32

ε ln 2 , 2).

4. (Extremely-low-noise, standard hardness, constant shrinkage).

µ = (logn)2

n , T = q > poly(n) and T ′ > poly(n) for every poly, and n
k <

1
2 .

Proof. Recall that T = 2
8µt

ln 2(1−2µ) and n
k = n

log(q/t)t <
2n

t log q . To prove param #1, we let
8µt

ln 2(1−2µ) = n0.5+ε and thus t = ln 2(1− 2µ)n0.5+ε/8µ, and then with q = 2
√
n we get

n

k
<

2
√
n

t
<

16µ

ln 2(1− 2µ)nε
.

However, hM that corresponds to param #1 is not computable in poly(n), and we need to switch

to security parameter λ = 2
√
n s.t. n = log2 λ, k = Ω(n1+ε) = Ω(log2+2ε λ), T ′ = λlog2ε λ/2. The

resulting hM : {0, 1}Ω(log2+2ε λ) → {0, 1}log2 λ is a T ′-hard CRH function on security parameter
λ but only operates on small inputs and outputs, and we use parallel repetition (Lemma 3.2)

to get a domain/range-extended CRH h′M : {0, 1}Ω(λ log2ε λ) → {0, 1}λ for M ∈ {0, 1}log2 λ×λ,
which is T ′-hard and is computable in time poly(λ). Now proceed to params #2 and #3: set

8µt
ln 2(1−2µ) to εn

logn for µ = O(1) or to ε
√
n

logn for µ = 1/
√
n, and let 2n

t log q = 1
2 so that

t = ln 2·ε(1−2µ)n
8µ logn , log q =

32µ log n

ε ln 2(1− 2µ)
for µ = O(1) ;

t = ln 2·ε·n
8 logn , log q =

32 log n

ε ln 2
for µ = 1/

√
n .

Note that we also need q ≥ n2 in respect of the t ≤ √q condition. Finally, param #4 is seen

by the following: for µ = (logn)2

n , any q = poly(n) and t satisfying 2n
t log q = 1/2 we have that

T = 2
8µt

ln 2(1−2µ) is another polynomial in n. �

11



Lemma 3.2 (Parallel repetitions of CRH) Let k = k(λ), d = d(λ) and T = T (λ) be in-
teger valued functions. If Hk,λ = {hs : {0, 1}k → {0, 1}λ, s ∈ {0, 1}poly(λ)} is a T -hard CRH
function, then H′dk,dλ = {h′s : {0, 1}dk → {0, 1}dλ, s ∈ {0, 1}poly(λ)}, where

h′s(y1, · · · ,yd) =
(
hs(y1), · · · , hs(yd)

)
, y1, · · · ,yd ∈ {0, 1}k ,

is a (T/d)-hard CRH function.

3.3 Assume Less, Shrink More and in Parallel at the Same Time

Although already assuming much less hardness than previously known, the CRH immediately
implied by constant-noise LPN (as specified by param #1 of Corollary 3.1) is inefficient as
M is of dimension n × 2

√
n and thus the resulting hash function has computation time far

beyond polynomial. The solution by switching to another parameter λ = 2
√
n makes the hash

function computable in time polynomial in λ but at the same time it dramatically downgrades
the security from 2Ω(n1/2+ε) to λΩ(log2ε λ), and deteriorates the shrinkage factor from polynomial
to poly-logarithmic. Otherwise said, we mainly establish feasibility results about basing CRH
on constant-noise LPN with minimal hardness possible.

LPN+RF → more efficient domain extenders. In this subsection, we discuss an alter-
native to void the security/efficiency loss, i.e., to preserve security, polynomial shrinkage and
efficiency at the same time. In addition to LPN, the construction relies on (arguably minimal)
idealized assumptions such as a small-domain random function (whose domain is much small-
er than the range) or a random permutation (which can be instantiated with a block cipher
keyed by a random public string). Unlike the parameter-switching technique, this approach
applies also to low-noise LPN with even reduced hardness. Note that idealized heuristics such
as a RF trivially implies collision resistance, e.g., a RF R : {0, 1}` → {0, 1}n with ` > n
(or otherwise truncating the output to make it compressing) is collision resistant. Therefore,
based on a small-domain RF (with ` � n) our main contribution is a simple and elegant
collision-resistance-preserving domain extender combining the best of the two worlds: maxi-
mized (depth-1) parallelizability and polynomial shrinkage. More specifically, simply parse the
input y into polynomially many blocks y1, . . ., yt, evaluate R on them independently and in
parallel, and output the XOR sum as below:

R : {0, 1}` → {0, 1}n (`� n)

hR : {0, 1}k → {0, 1}n (k = n1+ε)

hR(y) =
t⊕
i=1

R(i‖yi) ,

which yields a domain extender with polynomially shrinkage, i.e., n/k < 1/nΩ(1).

An idealized realization of hM. We recall that hM(y) = M · Expand(y) for an n ×
(q = t ·2L) matrix M and that Expand parses y into t = k/L blocks and produces same number
of output blocks accordingly. We also parse M into t equal-size submatrices M1, · · · , Mt, each
of dimension n× 2L. Let R : {0, 1}log(q) → {0, 1}n be a random function that describes M, i.e.,
for every j ∈ {0, 1}log(q) the output R(j) corresponds to the j-th column of M. Thus,

hM(y) =
[

M1 · · · Mt

]︸ ︷︷ ︸
M

·

 DeMul(y1)
...

DeMul(yt)


︸ ︷︷ ︸

Expand(y)

=
t⊕
i=1

R(i‖yi) (5)

where R(i‖yi) = Mi · DeMul(yi) simply follows the definition of R and DeMul. Therefore,
computing hM is now reduced to instantiating a small-domain random functionR : {0, 1}log(q) →
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{0, 1}n for log(q) � n, where the access to the huge amount of randomness in M is efficiently
implemented by R, as stated below.

Lemma 3.3 (An idealized realization of hM) Let k = k(n), t = t(n), q = q(n) and L =
L(n) be integer valued functions such that q/t = 2L. Assume that R : {0, 1}log(q) → {0, 1}n
behaves like a random function, then hR(y) =

⊕t
i=1R(i‖yi) as defined in (5) perfectly realizes

hM specified in Construction 3.1.

With the idealized realization of hM, we immediately obtain a simple and efficient way
to extend the domain of random functions polynomially while preserving collision resistance,
stated below as a corollary of Theorem 3.1.

Corollary 3.2 (A polynomially-shrinking domain extender) Let n be the security pa-
rameter, and let µ = µ(n), k = k(n), q = q(n), t = t(n) and T = T (n) such that t2 ≤
q ≤ T = 2

8µt
ln 2(1−2µ) . Assume that (n,µ,q)-DLPN is T -hard and R : {0, 1}log(q) → {0, 1}n be-

haves like a random function , then for y = y1‖ · · · ‖yt parsed as t = k/L blocks, each of size
L = log(q/t), we have

hR : {0, 1}k → {0, 1}n, hR(y) =
t⊕
i=1

R(i‖yi),

is a T ′-hard CRH function with shrinkage n/k, where (µ,T ,q,T ′,nk ) can be either of the following:

1. (Constant-noise, less hardness, polynomial shrinkage).
µ = O(1), T = 2n

0.5+ε
, q = 2n

0.5
, T ′ ≈ 2n

0.5+ε/2 and n
k < 16µ

ln 2(1−2µ)nε for any constant
ε > 0.

2. (Low-noise, less hardness, polynomial shrinkage).
µ = 1/

√
n, T = 2n

0.25+ε
, q = 2n

0.25
, T ′ ≈ 2n

0.25+ε/2 and n
k <

16
ln 2·nε for any constant ε > 0.

Proof. First, assume that hR is functionally equivalent to hM. Then, param #1 is the same
as the counterpart in Corollary 3.1 but we refrain from switching to a new security parameter.

To prove param #2, we recall that T = 2
8µt

ln 2(1−2µ) and n
k = n

log(q/t)t <
2n

t log q (see Theorem 3.1).

Let 8µt
ln 2(1−2µ) = n0.25+ε and thus t ≈ ln 2 · n0.75+ε/8, and then with q = 2n

0.25
we get

n

k
<

2n0.75

t
<

16

ln 2 · nε
.

The conclusion then follows from Lemma 3.3 that hR perfectly instantiates hM. �

One may want to instantiate R with a pseudorandom function (with key made public), but
the security cannot be achieved with a standard reducibility argument due to the distinction
between public-coin and secret-coin CRH functions [36]. We thus resort to random permutations
or idealized blockciphers.

Random functions vs. permutations. The small-domain random function (to be instan-
tiated) is not commonly found in practice, but it is implied by a large-domain random function
for free, i.e., R(x) = F (0l‖x) is a random function if F is a random one. Thus, we simply
consider a length-preserving random function, which can be in turn based on a random permu-
tation (and instantiated with block ciphers). For example, for random permutations π, π1, π2,
we have that π ⊕ π−1 [27] (or π1 ⊕ π2 [52]) is indifferentiable from a length-preserving random
function. This means that R on input x can be instantiated as

AESk(0
l‖x)⊕ AES−1

k (0l‖x) or AESk1(0l‖x)⊕ AESk2(0l‖x)
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where l = n−dlog(q)e bits are padded to fit into a permutation, k, k1, and k2 are public random
keys. Intuitively, the XOR of a permutation and its inverse (or two independent permutations)
is to destroy the permutation structure as its inversibility could give the adversary additional
advantages in collision finding. The former instantiation relies on the assumption that a practical
block cipher like AES on a random key behaves like a random permutation. We reproduce below
the results by Dodis et al. [27] that π⊕π−1 is indifferentiable from a (length-preserving) random
function. Therefore, instantiation of a random function with a blockcipher only incurs a factor
of 2 in the number of calls to the underlying primitive.

Lemma 3.4 (Lemma 4 from [27]) Let n be the security parameter, let q = q(n) and let π be

a random permutation over {0, 1}n. We have that π⊕π−1 is (q, q, O(nq), O( q
2

2n ))-indifferentiable
from an n-to-n-bit random function.

On related works. We offer a new and simple construction of polynomially shrinking domain
extenders from random functions/permutations/ fixed-key block ciphers. Compared with the
traditional blockcipher-based compression functions, e.g. [55, 57, 13], our solution avoids the
key-setup costs and eliminates the need for related-key security on a large space of keys. That
is, (using AES-128 as an example) we only assume that “AES on a single random key behaves
like a random permutation”, instead of that “AES on 2128 keys yields 2128 independent random
permutations”, as imposed by the Ideal Cipher Model. On the other hand, existing permutation-
based solutions either only offer a constant shrinkage factor (typically 1/2) [62, 51], or require
permutations with a large domain (e.g., [28] needs a large permutation on n2-bit strings to
obtain a CRH function with shrinkage factor 1/n), and in contrast our construction runs in
parallel and compresses polynomially.

4 Concluding Remarks

We construct CRH from LPN for a broad spectrum of parameter choices, and thus resolve
the problem whether CRH functions can be based on the (reasonable) hardness of LPN. We
also discuss how to improve the efficiency using idealized heuristics. We leave it as future
work to investigate more efficient instantiation (based on Ring-LPN), and to compare it with
SWIFFT/SWIFFTX.

Acknowledgments

Yu Yu was supported by the National Natural Science Foundation of China (Grant Nos.
61872236 and 61572192) and the National Cryptography Development Fund (Grant No. M-
MJJ20170209). Jiang Zhang is supported by the National Key Research and Development Pro-
gram of China (Grant No. 2017YFB0802005, 2018YFB0804105), the National Natural Science
Foundation of China (Grant Nos. 6160204661932019), and the Young Elite Scientists Spon-
sorship Program by CAST (2016QNRC001). Jian Weng was partially supported by National
Natural Science Foundation of China (Grant Nos. 61825203, U1736203, 61732021). Chun Guo
was supported by the Program of Qilu Young Scholars of Shandong University, and also partly
funded by Francois-Xavier Standaert via the ERC project SWORD (724725). Xiangxue Li was
supported by the National Cryptography Development Fund (Grant No. MMJJ20180106) and
the National Natural Science Foundation of China (Grant Nos. 61572192, 61971192). This
research is funded in part by the Anhui Initiative in Quantum Information Technologies (Grant
No. AHY150100) and Sichuan Science and Technology Program (Grant No. 2017GZDZX0002).

14



References

[1] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC
1996), pages 99–108, 1996.

[2] Michael Alekhnovich. More on average case vs approximation complexity. In 44th An-
nual Symposium on Foundations of Computer Science, pages 298–307, Cambridge, Mas-
sachusetts, October 2003. IEEE.

[3] Elena Andreeva, Bart Mennink, and Bart Preneel. Security properties of domain extenders
for cryptographic hash functions. Journal of Information Processing Systems , 6(4):453–
480, 2010.

[4] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In Advances in
Cryptology - CRYPTO 2009, pages 595–618, 2009.

[5] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod Vaikun-
tanathan. Low-complexity cryptographic hash functions. In Proceedings of the 2017 Con-
ference on Innovations in Theoretical Computer Science (ITCS 2017), pages ??–??, 2017.

[6] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input
locality. In Advances in Cryptology - CRYPTO 2007, pages 92–110, 2007.

[7] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and
Alon Rosen. SWIFFTX: A proposal for the SHA-3 standard. http://www.eecs.harvard.
edu/~alon/PAPERS/lattices/swifftx.pdf, 2009.

[8] Daniel Augot, Matthieu Finiasz, Philippe Gaborit, Stéphane Manuel, and Nicolas Sendrier.
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[30] Nico Döttling, Jörn Müller-Quade, and Anderson C. A. Nascimento. IND-CCA secure
cryptography based on a variant of the LPN problem. In Advances in Cryptology – ASI-
ACRYPT 2012, pages 485–503, 2012.

[31] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the min-
imum distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37,
2003.
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