Fully Homomorphic Encryption – Problem Set

Hybrid Encryption. Consider an FHE scheme HE with keys (pk, sk) and a (very efficient) symmetric encryption scheme SYM. We now consider a new FHE scheme, whose only difference from the original is the encryption algorithm as follows. To encrypt a message m, first generate a fresh key symsk for SYM. Then create $c^* = \text{HE}.\text{Enc}_{pk}(symsk)$ and $c = \text{SYM}.\text{Enc}_{symsk}(m)$. Output the pair (c^*, c) .

- 1. For a given ciphertext $c = \text{SYM}.\text{Enc}_{symsk}(m)$, consider the function $C_c(x) = \text{SYM}.\text{Dec}_x(c)$. What is the value of $C_c(symsk)$?
- 2. What is the output of $\mathsf{Eval}(C_c, c^*)$? Recall that the output of Eval is a ciphertext. What does this ciphertext encode? Under which key?
- 3. Show that the new scheme is also an FHE.
- 4. What is the complexity of encryption of the new scheme if the length of the message is much greater than that of the symmetric key, namely when $|m| \gg |symsk|$?

Bootstrapping. Analyze the general technique to bootstrap bounded depth HE.

1. Let D be the decryption circuit of an encryption scheme. Namely, D(sk, c) = m. Let d be the depth of this circuit.

Consider the circuit $C(sk, c_1, c_2)$, defined as

$$C(sk, c_1, c_2) = (D(sk, c_1) \text{ NAND } D(sk, c_2)).$$

What is the depth of the circuit C?

- 2. Let c_1 be an encryption of a bit m_1 and c_2 be an encryption of a bit m_2 . What is the result of $C(sk, c_1, c_2)$?
- 3. Given some c_1, c_2 , we define the circuit $C'_{c_1,c_2}(sk) = C(sk, c_1, c_2)$ (note that in C'_{c_1,c_2} , the values c_1, c_2 are hard-coded and are not a part of the input). What is the output of $C'_{c_1,c_2}(sk)$?
- 4. If our scheme is homomorphic, and letting $c^* = \mathsf{Enc}_{pk}(sk)$ be an encryption of the secret key sk. what is the output of $\mathsf{Eval}(C'_{c_1,c_2},c^*)$? Recall that the output of homomorphic evaluation is always a ciphertext. What does this ciphertext encode?
- 5. Show that if the scheme is homomorphic only for depth d + 1 circuits, and c^* is given, then any circuit can be evaluated homomorphically. Recall that any circuit can be written using only **NAND** gates.