Efficient MPC
Correlated Randomness
and Arithmetic Circuits

Claudio Orlandi, Aarhus University
We’re hiring!

• PhD students, postdocs, assistant professors (tenure track), associate professors

• **Topics**: blockchain, differential privacy, zero-knowledge proofs, secure multiparty computation, formal verification, language design and semantics for smart contracts, ...

• More info at https://iacr.org/jobs/
Online Poker

- 2♠, 5♠, 2♥, 5♥, J♦
- Q♠, Q♣, 7♣, 3♥, 2♦
- 10♠, 9♠, 8♣, 7♦, 6♦
- 3♠, 4♠, 7♥, Q♦, 10♦
Poker with Pirates

2♠, 5♠, 2♥, 5♥, J♦

Q♠, Q♣, 7♠, 3♥, 2♦,

10♠, 9♣, 8♣, 7♦, 6♦

A♠, A♣, A♥, A♦, K♦
Hospitals and Insurances

- **Problem:** Sick people forget to claim compensations from insurance

- **Solution:** Insurances and hospitals could periodically compare their data to find and help these people

- **Privacy Issue:** insurance and medical records are sensitive data! No other information than what is strictly necessary must be disclosed!
MPC Goes Live (2008)

Bogetoft et al.
“Multiparty Computation Goes Live”
• January 2008
• **Problem**: determine market price of sugar beets contracts
• 1200 farmers
• Computation: 30 minutes
Last decade: commercial interest and social value of MPC

- Estonian study on student dropout
- Boston women workforce council, study on wage gap

Figure 1: Illustration of a deployment of the protocol implementation for two participants.
Secure Computation

- Privacy
- Correctness
- Input independence
- ...
Part 1: Correlated Randomness and Arithmetic Circuits

• Warmup: One-Time Truth Tables

• Arithmetic Black Box and Evaluating Circuits with Beaver’s trick

• Simple Unconditionally Secure Protocols
Trusted Dealer

\[f(x, y) \]

Trusted Party

\[(r_A, r_B) \leftarrow D \]
"The simplest 2PC protocol ever"

\[(r_A, r_B) \leftarrow D\]
“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

1) Write the truth table of the function F you want to compute

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
“The simplest 2PC protocol ever” OTTT (Preprocessing phase)

2) Pick random \((r, s)\), rotate rows and columns

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 4 & 4 & 1 \\
1 & 2 & 2 & 2 & 3 \\
2 & 0 & 0 & 4 & 3 \\
3 & 0 & 0 & 4 & 1 \\
\end{array}
\]
“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

Pick $\begin{array}{c}
\text{T1} \\
\end{array}$ at random, and let

$\begin{array}{cccc}
1 & 4 & 4 & 1 \\
2 & 2 & 2 & 3 \\
0 & 0 & 4 & 3 \\
0 & 0 & 4 & 1 \\
\end{array} \rightarrow \begin{array}{c}
\text{T2} \\
\end{array}$ $- \begin{array}{c}
\text{T1} \\
\end{array}$
“The simplest 2PC protocol ever”

(Online phase)

\[u = x + r \]
\[v = y + s \]

\[z_2 = T_2[u, v] \]

“Privacy”: inputs masked w/uniform random values

Correctness: by construction

output \(f(x,y) = T_1[u, v] + z_2 \)
u = x + r

\[v \text{ (random)} \]

\[z_2 = f(x,y) - T1[u,v] \]

output \(f(x,y) = T1[u,v] + z_2 \)
What about active security?

\[u = x + r \]
\[v = y + s \]
\[z_2 = T2[u, v] \]

output \(f(x, y) = T1[u, v] + z_2 \)
What about active security?

\[u = x + r \]
\[v = y + s + e_1 \]
\[T_2[u,v] + e_2 \]
Is this cheating?

• \(v = y + s + e_1 = (y + e_1) + s = y' + s \)
 - Input substitution, **not cheating** according to the definition!

• \(M_2[u,v] + e_2 \)
 - Changes output to \(z' = f(x,y) + e_2 \)
 - Example: \(f(x,y) = 1 \) iff \(x = y \) (e.g. pwd check)
 - \(e_2 = 1 \) the output is 1 whp (login without pwd!)
 • Clearly breach of security!
Force Bob to send the right value

- **Problem:** Bob can send the wrong shares
- **Solution:** use MACs
 - e.g. $m=ax+b$ with $(a,b) \leftarrow F$ (e.g., $F=\mathbb{Z}_p$ with $p \geq 2^k$ prime)

Abort if $m' \neq ax' + b$
output \(f(x,y) = T1[u,v] + T2[u,v]\)
else
abort

Statistical security vs. malicious Bob w.p. \(1 - 2^{-\kappa}\)
“The simplest 2PC protocol ever” OTTT

• **Optimal communication complexity 😊**

• **Storage exponential in input size 😞**

→ **Represent function using circuit instead of truth table!**
Part 1: Correlated Randomness and Arithmetic Circuits

- Warmup: One-Time Truth Tables
- Arithmetic Black Box and Evaluating Circuits with Beaver’s trick
- Simple Unconditionally Secure Protocols
Circuit based computation
What kind of circuit?

• **Boolean**
 – Addition & Multiplication modulo 2 (XOR, AND)

• **Arithmetic: which modulo?**
 – In a field (\mathbb{Z}_p, GF(2^k))?
 – Determined by Public Key (e.g., Paillier, LWE, ...)
 – Arbitrary? (e.g., modulo 2^{32})
The Arithmetic Black Box (ABB)

• A reactive functionality which allows to manipulate secret values

• Often a good abstraction:
 – if you want to implement some algorithm in MPC, you might not care too much about how operation are implemented, just what the “interface” is.
ABB: Basic Commands

- **[x] ← Input(P_i, x)**
 - Party P_i inputs a secret value x, all other parties get a "handle/pointer" to [x]

- **x ← Open(P_j, [x])**
 - If all parties agree, party P_j learns the secret value contained in [x]

- **[z] ← Add([x],[y])** // or [z]=[x]+[y]
 - If all parties agree, a new handle [z] is created such that z=x+y
 - [z] ← Add(c,[x]), [z] ← Mul(c,[x]) easy from Add

- **[z] ← Mul([x],[y])** // or [z]=[x]*[y]
 - If all parties agree, a new handle is created such that z=x*y
ABB: Advanced (Efficient) Commands

• \([r] \leftarrow \text{Rand}()\)
 – Generate a random handle for \(r\)
 – Could have been implemented by \([r_i]\leftarrow \text{Input}(P_i, r_i)\) and
 \([r] \leftarrow [r_1]+...+[r_n]\)

• \(b \leftarrow \text{IsZero}([x])\)
 – Could be implemented by \([z]=[x]*[r]\) for random \(r\), then open \(z\) and
 check if = 0.

• \([x_1],...,x_n] \leftarrow \text{BitsOf}([x])\)
 – Useful and typically expensive

• **Exercise:** how would you implement these?
 – \([b] \leftarrow \text{IsZero}([x])\) // \(b=1\) iff \(x=0\)
 – \(b \leftarrow \text{Equality}([x],[y])\) // \(b=1\) iff \(x=y\)
 – \(b \leftarrow \text{IsBit}([x])\) // \(b=1\) iff \(x\in\{0,1\}\)
Beaver’s random triples trick

\[[z] \leftarrow \text{Mul}([x],[y]): \]

1. \(([[a],[b],[c]) \leftarrow \text{RandMul}()\)

 Creates random tuple such that \(c=a \times b\)

2. \(e=\text{Open}([a]+[x])\)

3. \(d=\text{Open}([b]+[y])\)

\[\text{Is this secure?}\]
\(e,d\) are “one-time-pad” encryptions of \(x\) and \(y\) using \(a\) and \(b\)

4. Compute \([z] = [c] + e[y] + d[x] - ed \)

\[ab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy) \]
Online Phase

Beaver and Preprocessing

- Independent of x,y
- Typically only depends on size of f
- Uses public key crypto technology \textit{(slower)}

Preprocessing

- Uses only information theoretic tools \textit{(order of magn. faster)}
Implementing the Arithmetic Black Box

• How to implement the basic commands?
 – Input, Add, Mul/RandMul

• In the remaining time:
 – Additive Secret Sharing
 • Passive Security
 • Active Security
 – Replicated Secret Sharing
 – Shamir Secret Sharing
Invariant

• For each \textbf{wire x} in the circuit we have

 – $[x] := (x_1, x_2)$ \hfill // read “x in a box”

 – Where Alice holds x_1

 – Bob holds x_2

 – Such that $x_1 + x_2 = x$

• Notation overload:

 – x is both the r-value and the l-value of x

 – use $n(x)$ for name of x and $v(x)$ for value of x when in doubt.

 – Then $[n(x)] = (x_1, x_2)$ such that $x_1 + x_2 = v(x)$
Circuit Evaluation

1) $[x] \leftarrow \text{Input}(A,x)$:
 - chooses random x_2 and send it to Bob
 - set $x_1 = x + x_2 \mod M$ // symmetric for Bob
 // mod omitted from now on

Alice only sends a random value! “Clearly” secure

2) $z \leftarrow \text{Open}(A,[z])$:
 - Bob sends z_2
 - Alice outputs $z = z_1 + z_2$ // symmetric for Bob

Alice should learn z anyway! “Clearly” secure
Circuit Evaluation

2) \([z] \leftarrow \text{Add}([x],[y]) \) \hspace{1cm} // at the end \(z = x + y \)

- Alice computes \(z_1 = x_1 + y_1 \)
- Bob computes \(z_2 = x_2 + y_2 \)

No interaction! “Clearly” secure

“for free” : only a local addition!
Circuit Evaluation

2a) $[z] \leftarrow \text{Mul}(c,[x])$
 // at the end $z = c \times x$

 – Alice computes $z_1 = c \times x_1$
 – Bob computes $z_2 = c \times x_2$

2c) $[z] \leftarrow \text{Add}(c,[x])$
 // at the end $z = c + x$

 – Alice computes $z_1 = c + x_1$
 – Bob computes $z_2 = x_2$
3) Multiplication?

How to compute \([z]=[xy]\) ?

Alice, Bob should compute

\[z_1 + z_2 = (x_1 + x_2)(y_1 + y_2) \]

\[= x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2 \]

How do we compute this?

Alice can compute this

Bob can compute this
RandMul() with Trusted Dealer

Pick random
\[a_1, a_2, b_1, b_2, c_1\]
and
\[c_2 = (a_1 + a_2)(b_1 + b_2) - c_1\]
Implementing the Arithmetic Black Box

• How to implement the basic commands?
 – Input, Add, Mul/RandMul

• In the remaining time:
 – Additive Secret Sharing
 • Passive Security
 • Active Security
 – Replicated Secret Sharing
 – Shamir Secret Sharing
Secure Computation

\[z^* \]

\[w \]

\[w + e \]

\[\text{[w]} \]

\[\text{[w+e]} \]

\[\text{[x_1]} \]

\[\text{[x_2]} \]

\[\text{[x_3]} \]

\[\text{[x_4]} \]

\[\text{[x_5]} \]

\[\text{[y_1]} \]

\[\text{[y_2]} \]

\[\text{[y_3]} \]

\[\text{[y_4]} \]

\[\text{[y_5]} \]
Active Security?

• “Privacy?”
 – even a malicious Bob does not learn anything 😊

• “Correctness?”
 – a corrupted Bob can change his share during any “Open” (both final result or during multiplication) leading the final output to be incorrect 😞
Problem

2) $z \leftarrow \text{Open}(A,[z])$:
 - Bob sends $z_2 + e$
 - Alice outputs $z = z_1 + z_2 + e$

 // error change output distribution in way that cannot be simulated by input substitution
Authenticated Shares

- **Passive share:** \([x]\) means
 - Alice has \(x_1\), Bob has \(x_2\),
 \[x_1 + x_2 = x\]

- **MAC on Share** \([x]\) (BeDOZa, TinyOT, ...):
 - \([x]\) plus:
 - Bob has a MAC key \((\Delta_2, K_2)\), Alice has a MAC \(M_1\):
 \[M_1 = \Delta_2 \cdot x_1 + K_2\]
 - (Symmetric for Bob)
Authenticated Shares

• Is the representation $[x]$ still linear?
 Yes, if Δ_1, Δ_2 are “global” keys

$[x] = ([x], (\Delta_1, K_1(x), M_1(x)), (\Delta_2, K_2(x), M_2(x)))$

$[y] = ([y], (\Delta_1, K_1(y), M_1(y)), (\Delta_2, K_2(y), M_2(y)))$

$[z] = ([x+y],$

$(\Delta_1, K_1(x)+K_1(y), M_1(x) + M_1(y)),$

$(\Delta_2, K_2(x)+K_2(y), M_2(x) + M_2(y)))$
Better MACs for MPC

• **SPDZ:**
 – **Problem:** with MAC on Share you need to store a MAC for every other party!
 – **Solution:** MAC value directly instead
 – \(\llbracket x \rrbracket = ([x], [M(x)], [\Delta]) \) with \(M(x) = \Delta x \) (\(\Delta \) is global)

• **MiniMAC:**
 – **Problem:** MAC must be large for unpredictability. If working in small field, need to have multiple MACs per value.
 – **Solution:** Compute MAC on vector of bits instead

• **SPDZ2K:**
 – **Problem:** MACs don’t work modulo power of 2’s (not a field).
 – **Solution:** compute MAC modulo \(2^{k+s} \)

• ...

\[\text{47} \]
Implementing the Arithmetic Black Box

• How to implement the basic commands?
 – Input, Add, Mul/RandMul

• In the remaining time:
 – Additive Secret Sharing
 • Passive Security
 • Active Security
 – Replicated Secret Sharing
 – Shamir Secret Sharing
Implementing the Arithmetic Black Box

• How to implement the basic commands?
 – Input, Add, Mul/RandMul

• In the remaining time:
 – Additive Secret Sharing
 • Passive Security
 • Active Security
 – Replicated Secret Sharing
 – Shamir Secret Sharing
Replicated Secret Sharing

• \([x]\) means:
 - \(x = x_1 + x_2 + x_3\) where
 - \(P_1\) knows \((x_1, x_2)\)
 - \(P_2\) knows \((x_2, x_3)\)
 - \(P_3\) knows \((x_3, x_1)\)

• \([x]\) \(\leftarrow \text{Input}(P_i, x)\)
 - \(P_i\) picks random shares and distributes them.

• \(x \leftarrow \text{Open}(P_i, [x])\)
 - Everyone sends their shares to \(P_i\) who reconstructs.

• \([x]\) \(\leftarrow \text{Add}([x], [y])\)
 - Everyone locally adds their shares.

\(n=3\) parties, \(t \leq 1\) corruptions

No party alone can reconstruct the secret.
Goal, compute random such that

\[z = (x_1 + x_2 + x_3)(y_1 + y_2 + x_3) = x_1 y_1 + x_2 y_1 + x_3 y_1 + x_1 y_2 + x_2 y_2 + x_3 y_2 + x_1 y_3 + x_2 y_3 + x_3 y_3 \]
Replicated Secret Sharing

• \([z]=\text{Mul}([x],[y])\)
 - \(P_1\) computes \(z_1 = x_1y_1 + x_2y_1 + x_1y_2\)
 • Symmetric for \(P_2, P_3, \ldots\)
 - \([z_1] \leftarrow \text{Input}(P_1,z_1)\) \hspace{1cm} // Why resharining?
 • Symmetric for \(P_2, P_3, \ldots\)
 - \([z]=[z_1]+[z_2]+[z_3]\)

n=3 parties
t≤1 corruptions
Implementing the Arithmetic Black Box

• How to implement the basic commands?
 – Input, Add, Mul/RandMul

• In the remaining time:
 – Additive Secret Sharing
 • Passive Security
 • Active Security
 – Replicated Secret Sharing
 – Shamir Secret Sharing
Shamir vs. Replicated Secret Sharing

• **Share size:**
 – Shamir is optimal (size of share = size of secret)
 – RSS scales horribly with the number of parties

• **Generality:**
 – Shamir works only in fields
 – RSS works in any ring
Shamir Secret Sharing

- $[x]$ means:
 - $x = p(0)$ where
 - $p(\alpha) = x_0 + x_1\alpha$
 - P_1 knows $p(1)$
 - P_2 knows $p(2)$
 - P_3 knows $p(3)$

$n=3$ parties
$t \leq 1$ corruptions
Computations in field
Shamir Secret Sharing

- $[x]$ means:
 - $x = p(0)$ where
 - $p(\alpha) = x_0 + x_1 \alpha$
 - P_1 knows $p(1)$
 - P_2 knows $p(2)$
 - P_3 knows $p(3)$

No party alone can reconstruct the secret

$n=3$ parties
$t \leq 1$ corruptions
Computations in field
Shamir Secret Sharing

• $[x]$ means:
 - $x = p(0)$ where
 - $p(\alpha) = x_0 + x_1\alpha$
 - P_1 knows $p(1)$
 - P_2 knows $p(2)$
 - P_3 knows $p(3)$

Any two parties can reconstruct x
Reconstruction - Details

- Given \(p(1), p(2) \) one can reconstruct \(p(x) \) as
 \[
p(\alpha) = \delta_1(\alpha)p(1) + \delta_2(\alpha)p(2)
 \]

- \(\delta_i(\alpha) \) is a poly s.t.
 \[
 \begin{align*}
 \delta_i(i) &= 1 \\
 \delta_i(j) &= 0 \text{ for all } j \text{ in the reconstruction set (except } i)
 \end{align*}
 \]

- In our case
 \[
 \begin{align*}
 \delta_1(\alpha) &= (\alpha - 2)(1-2)^{-1} \\
 \delta_2(\alpha) &= (\alpha - 1)(2-1)^{-1}
 \end{align*}
 \]

- To reconstruct secret enough to compute
 \[
 p(0) = \delta_1(0)p(1) + \delta_2(0)p(2)
 \]

- (Generalizes to any other degree)
Shamir Secret Sharing

- \([z] = \text{Add}([x],[y])\) means:
 - \(x = p(0), y = q(0)\)
 - \(p(\alpha) = x_0 + x_1 \alpha\)
 - \(q(\alpha) = y_0 + y_1 \alpha\)

- \(P_1\) computes \(p(1) + q(1)\)
- \(P_2\) computes \(p(2) + q(2)\)
- \(P_3\) computes \(p(3) + q(3)\)
Shamir Secret Sharing

- $[z] = \text{Mul}([x],[y])$ (part 1):
 - $x = p(0), y = q(0)$
 - $p(\alpha) = x_0 + x_1\alpha$
 - $q(\alpha) = y_0 + y_1\alpha$

 - P_1 computes $t(1) = p(1) \cdot q(1)$
 - P_2 computes $t(2) = p(2) \cdot q(2)$
 - P_3 computes $t(3) = p(3) \cdot q(3)$

- $t(0) = xy$ (as desired)
- But t has the wrong degree!
- $t(\alpha) = t_0 + t_1\alpha + t_2\alpha^2$

$n=3$ parties
$t \leq 1$ corruptions
Computations in field
Shamir Secret Sharing

- \([z]=\text{Mul}([x],[y])\) (part 2):
 - \([z_1] \leftarrow \text{Input}(P_1, t(1))\)
 - Symmetric for \(P_2, P_3\)
 - Then reconstruct i.e.

 \[t(0)] = \delta_1[t(1)] + \delta_2[t(2)] + \delta_2[t(3)]\]
 - But \(t(0)=z\), so we’re done!

- Exercise: find the the values \(\delta_1, \delta_2, \delta_3\)
 (Hint, the degree is different this time!)
Recap

• Simple protocols with trusted dealer
 – OTTT
 – Circuit evaluation with random triples
 – Active security via information theoretic MACs

• Simple protocols for 3 parties, 1 corruption
 – Replicated Secret Sharing
 – Shamir Secret Sharing

Tomorrow:

• How to get rid of the trusted dealer?
 – Protocols for secure multiplication
 – OT and OT extension

• Efficiency of 2PC based on garbled circuits
 – Garbling techniques
 – Techniques for Active Security

• If time (and patience) allows
 – Anonymity in Cryptocurrencies
Primary References

• Cryptographic Computing, lecture notes, http://orlandi.dk/crycom (with theory and programming exercises)
• On the Power of Correlated Randomness in Secure Computation (Ishai et al.)
• Semi-homomorphic Encryption and Multiparty Computation (Bendlin et al.)
• Secure multi-party computation made simple (Maurer)
• A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation (Asharov et al.)
• A Framework for Constructing Fast MPC over Arithmetic Circuits with Malicious Adversaries and an Honest-Majority (Lindell et al.)
Other References

• A New Approach to Practical Active-Secure Two-Party Computation (Nielsen et al.)
• Web-based Multi-Party Computation with Application to Anonymous Aggregate Compensation Analytics (Lapets et al.)
• Multiparty Computation Goes Live (Bogetoft et al.)
• Students and Taxes: a Privacy-Preserving Social Study Using Secure Computation (Bogdanov et al.)
• Efficient Multiparty Protocols Using Circuit Randomization (Beaver)
• How to Share a Secret (Shamir)
• Chaum et al. (Multiparty Unconditionally Secure Protocols)
• SPDℤ2k: Efficient MPC mod 2k for Dishonest Majority (Cramer et al.)
• Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing (Damgård et al.)
• Multiparty Computation from Somewhat Homomorphic Encryption (Damgård et al.)
• Primitives and applications for multi-party computation (Toft)
• Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ben-Or et al.)