Introduction to Secure Computation, part 2

Jonathan Katz
Outline: Hour 2

• *Semi-honest* (generic) secure computation
 – Garbled circuits and constant-round secure two-party computation
 – Secure multi-party computation
 – Constant-round secure multi-party computation
Generic secure computation

• How to prove a generic feasibility result?
• Work with *universal model of computation*
 – I.e., show protocol for any function expressed in that model
 – Here: Boolean circuits with NAND gates
• Other choices
 – Turing machines
 – RAMs
 – Arithmetic circuits
Boolean circuits

Internal gate
(NAND gates suffice)

Input wires, each “belonging” to one party

Output wires

Note that out-degree can be > 1
Garbled circuits [Yao86]

• Main idea
 – Both parties agree on a Boolean circuit C
 – “Garbler” prepares a “garbled version” of C that can be evaluated “obliviously” (i.e., without knowledge of wire values)
 – “Evaluator” evaluates the garbled version of C
Garbled gate

<table>
<thead>
<tr>
<th>1st wire</th>
<th>2nd wire</th>
<th>Output wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>b_0</td>
<td>c_0</td>
</tr>
<tr>
<td>a_0</td>
<td>b_1</td>
<td>c_0</td>
</tr>
<tr>
<td>a_1</td>
<td>b_0</td>
<td>c_0</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
</tr>
</tbody>
</table>

AND Gate

$Enc_{a_1, b_0}(c_0)$

$Enc_{a_1, b_1}(c_1)$

$Enc_{a_0, b_1}(c_0)$

$Enc_{a_0, b_0}(c_0)$
Garbled circuit

And Gate
- $Enc_{a_0, b_1}(e_0)$
- $Enc_{a_1, b_1}(e_1)$
- $Enc_{a_0, b_0}(e_0)$
- $Enc_{a_1, b_0}(e_0)$

And Gate
- $Enc_{c_1, d_1}(f_1)$
- $Enc_{c_0, d_1}(f_0)$
- $Enc_{c_1, d_0}(f_0)$
- $Enc_{c_0, d_0}(f_0)$

Or Gate
- $Enc_{e_0, f_1}(g_1)$
- $Enc_{e_1, f_1}(g_1)$
- $Enc_{e_1, f_0}(g_1)$
- $Enc_{e_0, f_0}(g_0)$
Semi-honest 2PC

“Garbler”

\[\begin{align*}
\text{Or Gate} & \\
Enc_{a_0, b_1}(c_1) & \\
Enc_{a_1, b_1}(c_1) & \\
Enc_{a_1, b_0}(c_1) & \\
Enc_{a_0, b_0}(c_0) & \\
\end{align*} \]

“Evaluator”

\[\begin{align*}
\text{Or Gate} & \\
Enc_{e_0, f_1}(g_1) & \\
Enc_{e_1, f_1}(g_1) & \\
Enc_{e_1, f_0}(g_1) & \\
Enc_{e_0, f_0}(g_0) & \\
\end{align*} \]

Evaluate...

\[\begin{align*}
b_0, b_1 & \rightarrow \text{OT} \\
a_0, d_1, e_1 & \rightarrow 0 \\
0 & \rightarrow b_0 \\
z_0 & \rightarrow 0, z_1 \rightarrow 1 \\
\end{align*} \]
Invariant

- For each wire w with value b (when evaluated on parties’ inputs), evaluator knows key w_b

- Proof by induction:
 - Base case: input wires:
 - Evaluator’s input wires: from OT
 - Garbler’s input wires: by construction
 - Inductive step
 - By construction of garbled gate
Correctness

• At end of protocol, evaluator knows z_b
 – Can recover output b from the decoding table sent by the garbler
Proof of security?

• Prove security in *OT-hybrid world*
 – Rely on composition theorem

• Prove (semi-honest) security for one AND gate
 – Proof for larger circuits tedious but not difficult
Proof of security I

• Simulator for corrupted garbler:
 – Trivial!
 – All communication is \textit{from} the garbler (in OT-hybrid world)
 • No messages to simulate!
Proof of security II

• Simulator for corrupted evaluator:

\[x_0, x_1, y_0, y_1, z_0, z_1 \leftarrow \{0,1\}^k \]

\[\text{AND} \quad \begin{array}{c}
\text{Sim}(b) \\
\rightarrow \\
b', z_1 \rightarrow 1-b'
\end{array} \]

\[\text{OT} \quad \begin{array}{c}
b \\
\rightarrow \\
x_0 \\
\rightarrow \\
y_0 \\
\rightarrow \\
z_0 \rightarrow b', z_1 \rightarrow 1-b'
\end{array} \]
Indistinguishability (sketch)

• In real world, garbled table is prepared properly
• In ideal world, all rows except one are encryptions of “garbage”
• Since evaluator is missing all-but-one set of keys, these are indistinguishable!
Optimization

• As described, the evaluator tries to decrypt all 4 rows of a garbled gate
• Can do better by having the garbler assign a random label to each key
Garbled gate

\[a_0 \rightarrow \lambda_a \rightarrow 0 \]
\[a_1 \rightarrow a_1 \oplus \lambda_a \]
\[b_0 \rightarrow \lambda_b \rightarrow 0 \]
\[b_1 \rightarrow b_1 \oplus \lambda_b \]

\[a_0, a_1 \rightarrow \lambda_a, \lambda_b \]
\[b_0, b_1 \rightarrow c_0, c_1 \]
\[c_0 \rightarrow \lambda_c \]
\[c_1 \rightarrow 1 \oplus \lambda_c \]

\[a_0, b_0 \rightarrow c_{\lambda_{00}}, \text{ where } \]
\[\lambda_{00} = \lambda_c \oplus (\lambda_a \land \lambda_b) \]

AND Gate

- \(Enc_{a_0, b_0}(\lambda_{00}, c_{\lambda_{00}}) \)
- \(Enc_{a_0, b_1}(\lambda_{01}, c_{\lambda_{01}}) \)
- \(Enc_{a_1, b_0}(\lambda_{10}, c_{\lambda_{10}}) \)
- \(Enc_{a_1, b_1}(\lambda_{11}, c_{\lambda_{11}}) \)
Properties of the protocol

• Protocol runs in *constant rounds*, regardless of the circuit
• #OTs linear in the input lengths
• Symmetric-key operations/communication linear in the circuit size
• In OT-hybrid world:
 – Perfect security for corrupted generator
 – Computational security for corrupted evaluator
Main drawback

• How to extend to multi-party case?
GMW protocol [GMW87]

• Main idea:
 – Parties *interactively* evaluate the circuit on their inputs, in an oblivious fashion
 – Using a “mini” secure computation at each step!

• Look at two-party case first, then extend to multi-party case
Invariant

• For each wire w with value b (when evaluated on parties’ inputs), parties will hold a random *secret sharing* of b

• Note: easy to establish invariant at input wires
Evaluating a gate

For $x, y \in \{0,1\}$:

$$c_{xy} = (a_1 \oplus x) \cdot (b_1 \oplus y) \oplus c_1$$

What if $(a_2, b_2) \neq (0,0)$? $c_2 = (a_1 \oplus 0) \cdot (b_1 \oplus 0) \oplus c_1$

$$c_2 = c_{a_2b_2}$$
Output determination

• For output wires, parties simply reveal their shares to each other
Proof of security?

• Proof is symmetric for each party
• Prove security in OT-hybrid world
• Simulator
 – Generate random share for each input wire
 – Simulate computation of each gate by giving random OT output
 – For each output wire, send share that results in (known) output value

• Perfectly secure in OT-hybrid world!
Properties of the protocol

• Protocol has round complexity *linear* in the depth of the circuit
 – (Computation of gates at same depth can be parallelized)

• #OTs/communication linear in the circuit size

• In OT-hybrid world, perfect security for both parties
GMW multi-party case

• Use n-out-of-n secret sharing
 – So \(a = a_1 \oplus \cdots \oplus a_n \)

 ![AND gate diagram]

• To evaluate an AND gate, use the fact that
 \[c = a \cdot b = (a_1 \oplus \cdots \oplus a_n) \cdot (b_1 \oplus \cdots \oplus b_n) \]
 \[= \sum_{i,j} a_i b_j \]
 \[= \sum_i a_i b_i + \sum_{i \neq j} a_i b_j \]

 Compute locally Compute as before
GMW protocol

• Each party shares their inputs as before
• To evaluate an AND gate with input wires shared as \{a_i\} and \{b_i\} do:
 – For all \(i \neq j\), parties \(P_i\) and \(P_j\) compute random \(c_{ij}, c_{ji}\), resp., such that \(c_{ij} \oplus c_{ji} = a_i b_j\), and random \(d_{ij}, d_{ji}\), resp., such that \(d_{ij} \oplus d_{ji} = a_j b_i\)
 • This is done using OT, as previously
 – Each \(P_i\) locally computes \(c_i = a_i b_i \oplus \sum_j c_{ij} \oplus \sum_j d_{ij}\)
 • Note \(\oplus_i c_i = c = (a_1 \oplus \cdots \oplus a_n) \cdot (b_1 \oplus \cdots \oplus b_n)\)
• Output wires handled as before
Security?

• As before, possible to prove perfect security for any $t < n$ corrupted parties in the OT-hybrid world
Properties of the protocol

• Protocol has round complexity *linear* in the depth of the circuit
 – (Computation of gates at same depth can be parallelized)

• \#OTs/communication = O(n^2 \cdot |C|)

• In OT-hybrid world, perfect security for any number of corrupted parties
The BMR protocol

• A constant-round multi-party protocol
• Main idea:
 1. Parties run a linear-round MPC protocol to compute a garbled circuit GC
 2. All parties evaluate the garbled circuit
• Key insight: if the circuit for computing GC has constant depth, then the protocol runs in constant rounds
Computing a garbled gate

• Say all keys are secret shared
 – E.g., $a_0 = a_{01} \oplus a_{02} \oplus \ldots \oplus a_{0n}$

• Consider the function that maps these shares to a garbled gate
 – Problem: unclear what is the depth of the circuit computing Enc
 – Solution: need to choose the right encryption scheme...
 • And be slightly clever about how it is implemented
Computing a garbled gate

• Each wire key will now be a vector of keys, one held by each party
 – So \(a_0 = (a_{01}, \ldots, a_{0n}) \)

• Define \(\text{Enc}_{a, b}(\text{tag}; m) = m \oplus \bigoplus_i F_{a_i}(\text{tag}) \oplus \bigoplus_i F_{b_i}(\text{tag}) \), where tag does not repeat, \(F \) is a block cipher
 – Here, \(\text{tag} = (\text{gate number, row index}) \)
 – Note: missing any key \(\Rightarrow \) decryption impossible
Computing a garbled gate

• Each party P_i does:
 – For each wire w, choose w_{0i}, w_{1i}, and λ_{wi}

• Consider the following functionality (for garbling AND gate with wires a, b, c):
 – Input of P_i: $(a_{0i}, a_{1i}, \lambda_{ai}), (b_{0i}, b_{1i}, \lambda_{bi}), (c_{0i}, c_{1i}, \lambda_{ci})$
 – Set $a_0 = (a_{01}, ..., a_{0n})$, etc.
 – Set $\lambda_a = \oplus_i \lambda_{ai}$, etc.
 – Output garbled gate
 – Important that no party knows $\lambda_a, \lambda_b, \lambda_c$!

<table>
<thead>
<tr>
<th>AND Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Enc_{a_{0}, b_{0}}(00; \lambda_{00}, c_{\lambda_{00}})$</td>
</tr>
<tr>
<td>$Enc_{a_{0}, b_{1}}(01; \lambda_{01}, c_{\lambda_{01}})$</td>
</tr>
<tr>
<td>$Enc_{a_{1}, b_{0}}(10; \lambda_{10}, c_{\lambda_{10}})$</td>
</tr>
<tr>
<td>$Enc_{a_{1}, b_{1}}(11; \lambda_{11}, c_{\lambda_{11}})$</td>
</tr>
</tbody>
</table>
Computing a garbled gate

- Problem: unclear what is the depth of the circuit computing $F!$
- Solution: Each P_i also provides $F_{a_0i}(00)$, $F_{a_0i}(01)$, etc. as input to the gate-garbling functionality
 - Important here that there is no dependence on what is being encrypted
Computing a garbled circuit

• Input wires handled differently
 – If a is an input wire belonging to \(P_i \), then only \(P_i \) chooses \(a_0, a_1, \lambda_a \)
 – If input on that wire is b, then \(P_i \) broadcasts \(b \oplus \lambda_a \) and \(a_b \oplus \lambda_a \) after garbling

• Note that all gates can be garbled *in parallel*
 – So the circuit for computing a garbled circuit has constant depth
BMR protocol

• Parties collectively generate a garbled circuit, and broadcast the keys for input wires
• Each party locally evaluates the garbled circuit
• For each output wire w, each P_i reveals λ_{wi}
Security?

• Prove security in “GMW-hybrid world”
• Secure for any $t < n$ corrupted parties
Properties of the protocol

• Runs in $constant$ rounds
• $O(|C|)$ “small” secure computations
Summary

• Three protocols for semi-honest secure computation
 – Garbled circuits
 • Constant-round, two-party
 – GMW
 • Linear-round, multi-party
 – BMR
 • Constant-round, multi-party
References

• Goldreich, “Foundations of Cryptography, vol. 2”

Thank you!